RESUMO
Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network could allow the development of correlated oxide-based magnetic tunnelling junctions with non-collinear magnetization, with possible practical applications as miniaturized high-switching-speed magnetic random access memory (MRAM) devices. Here, we demonstrate how to manipulate magnetic and electronic anisotropic properties in manganite heterostructures by engineering the oxygen network on the unit-cell level. The strong oxygen octahedral coupling is found to transfer the octahedral rotation, present in the NdGaO3 (NGO) substrate, to the La2/3Sr1/3MnO3 (LSMO) film in the interface region. This causes an unexpected realignment of the magnetic easy axis along the short axis of the LSMO unit cell as well as the presence of a giant anisotropic transport in these ultrathin LSMO films. As a result we possess control of the lateral magnetic and electronic anisotropies by atomic-scale design of the oxygen octahedral rotation.
Assuntos
Armazenamento e Recuperação da Informação , Compostos de Manganês/química , Oxigênio/química , Anisotropia , RotaçãoRESUMO
Charge-ordered ground states permeate the phenomenology of 3d-based transition metal oxides, and more generally represent a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-T(c) superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in two cuprate families: Bi2Sr(2-x)La(x)CuO(6+δ) (Bi2201) and YBa2Cu3O(6+y) (YBCO). We detect no signatures of spatial modulations along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order. We also resolve the intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic description of charge order in cuprates, and its interplay with superconductivity.
RESUMO
Two-dimensional electron gases (2DEGs) formed at the interface of insulating complex oxides promise the development of all-oxide electronic devices. These 2DEGs involve many-body interactions that give rise to a variety of physical phenomena such as superconductivity, magnetism, tunable metal-insulator transitions and phase separation. Increasing the mobility of the 2DEG, however, remains a major challenge. Here, we show that the electron mobility is enhanced by more than two orders of magnitude by inserting a single-unit-cell insulating layer of polar La(1-x)Sr(x)MnO3 (x = 0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 produced at room temperature. Resonant X-ray spectroscopy and transmission electron microscopy show that the manganite layer undergoes unambiguous electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits Shubnikov-de Haas oscillations and fingerprints of the quantum Hall effect, demonstrating unprecedented high mobility and low electron density.
RESUMO
Using resonant magnetic diffraction at the Ni L_{2,3} edge in a LaNiO_{3} superlattice, we show that dynamical effects beyond the standard kinematic approximation can drastically modify the resonant scattering cross section. In particular, the combination of extinction and refraction convert maxima to minima in the azimuthal-angle dependence of the diffracted intensity, which is commonly used to determine orbital and magnetic structures by resonant x-ray diffraction. We provide a comprehensive theoretical description of these effects by numerically solving Maxwell's equations in three dimensions. The understanding and description of dynamical diffraction enhances the capabilities of resonant x-ray scattering as a probe of electronic ordering phenomena in solids.
RESUMO
Homogeneous mixed-valence (MV) behaviour is one of the most intriguing phenomena of f-electron systems. Despite extensive efforts, a fundamental aspect which remains unsettled is the experimental determination of the limiting cases for which MV emerges. Here we address this question for SmB6, a prototypical MV system characterized by two nearly-degenerate Sm2+ and Sm3+ configurations. By combining angle-resolved photoemission spectroscopy (ARPES) and x-ray absorption spectroscopy (XAS), we track the evolution of the mean Sm valence, vSm, in the SmxLa1-xB6 series. Upon substitution of Sm ions with trivalent La, we observe a linear decrease of valence fluctuations to an almost complete suppression at x = 0.2, with vSm ~ 2; surprisingly, by further reducing x, a re-entrant increase of vSm develops, approaching the value of vimp ~ 2.35 in the dilute-impurity limit. Such behaviour departs from a monotonic evolution of vSm across the whole series, as well as from the expectation of its convergence to an integer value for x â 0. Our ARPES and XAS results, complemented by a phenomenological model, demonstrate an unconventional evolution of the MV character in the SmxLa1-xB6 series, paving the way to further theoretical and experimental considerations on the concept of MV itself, and its influence on the macroscopic properties of rare-earth compounds in the dilute-to-intermediate impurity regime.
RESUMO
The fundamental electronic structure of the widely used battery material Li(x)CoO(2) still remains a mystery. Soft x-ray absorption spectroscopy of Li(x)CoO(2) reveals that holes with strong O 2p character play an essential role in the electronic conductivity of the Co(3+)/Co(4+) mixed valence CoO(2) layer. The oxygen holes are bound to the Co(4+) sites and the Li-ion vacancy, suggesting that the Li-ion flow can be stabilized by oxygen hole back flow. Such an oxygen hole state of Li(x)CoO(2) is unique among the various oxide-based battery materials and is one of the key ingredients to improving their electronic and Li-ion conductivities.
RESUMO
By a combined angle-resolved photoemission spectroscopy and density functional theory study, we discover that the surface metallicity is polarity driven in SmB6. Two surface states, not accounted for by the bulk band structure, are reproduced by slab calculations for coexisting B6 and Sm surface terminations. Our analysis reveals that a metallic surface state stems from an unusual property, generic to the (001) termination of all hexaborides: the presence of boron 2p dangling bonds, on a polar surface. The discovery of polarity-driven surface metallicity sheds new light on the 40-year old conundrum of the low-temperature residual conductivity of SmB6, and raises a fundamental question in the field of topological Kondo insulators regarding the interplay between polarity and nontrivial topological properties.
RESUMO
The role of Co substitution in the low-energy electronic structure of Ca(Fe(0.944)Co(0.056))(2)As(2) is investigated by resonant photoemission spectroscopy and density-functional theory. The Co 3d state center of mass is observed at 250 meV higher binding energy than that of Fe, indicating that Co possesses one extra valence electron and that Fe and Co are in the same oxidation state. Yet, significant Co character is detected for the Bloch wave functions at the chemical potential, revealing that the Co 3d electrons are part of the Fermi sea determining the Fermi surface. This establishes the complex role of Co substitution in CaFe(2)As(2) and the inadequacy of a rigid-band shift description.
RESUMO
Recently, charge density wave (CDW) order in the CuO(2) planes of underdoped YBa(2)Cu(3)O(6+δ) was detected using resonant soft x-ray scattering. An important question remains: is the chain layer responsible for this charge ordering? Here, we explore the energy and polarization dependence of the resonant scattering intensity in a detwinned sample of YBa(2)Cu(3)O(6.75) with ortho-III oxygen ordering in the chain layer. We show that the ortho-III CDW order in the chains is distinct from the CDW order in the planes. The ortho-III structure gives rise to a commensurate superlattice reflection at Q=[0.33 0 L] whose energy and polarization dependence agrees with expectations for oxygen ordering and a spatial modulation of the Cu valence in the chains. Incommensurate peaks at [0.30 0 L] and [0 0.30 L] from the CDW order in the planes are shown to be distinct in Q as well as their temperature, energy, and polarization dependence, and are thus unrelated to the structure of the chain layer. Moreover, the energy dependence of the CDW order in the planes is shown to result from a spatial modulation of energies of the Cu 2p to 3d(x(2)-y(2)) transition, similar to stripe-ordered 214 cuprates.
RESUMO
Transition-metal substitution in Fe pnictides leading to superconductivity is usually interpreted in terms of carrier doping to the system. We report on a density functional calculation of the local substitute electron density and demonstrate that substitutions like Co and Ni for Fe do not carrier dope but rather are isovalent to Fe. We find that the extra d electrons for Co and Ni are almost totally located within the muffin-tin sphere of the substituted site. We suggest that Co and Ni act more like random scatterers scrambling momentum space and washing out parts of the Fermi surface.
RESUMO
The results of model calculations using exact diagonalization reveal the orbital character of states associated with different Raman loss peaks in Cu K-edge resonant inelastic x-ray scattering (RIXS) from La2CuO4. The model includes electronic orbitals necessary to highlight the nonlocal Zhang-Rice singlet, charge transfer, and d-d excitations, as well as states with apical oxygen 2p(z) character. The dispersion of these excitations is discussed with prospects for resonant final state wave-function mapping. A good agreement with experiments emphasizes the substantial multiorbital character of RIXS profiles in the energy transfer range 1-6 eV.
RESUMO
Determining the nature of the electronic phases that compete with superconductivity in high-transition-temperature (high-T(c)) superconductors is one of the deepest problems in condensed matter physics. One candidate is the 'stripe' phase, in which the charge carriers (holes) condense into rivers of charge that separate regions of antiferromagnetism. A related but lesser known system is the 'spin ladder', which consists of two coupled chains of magnetic ions forming an array of rungs. A doped ladder can be thought of as a high-T(c) material with lower dimensionality, and has been predicted to exhibit both superconductivity and an insulating 'hole crystal' phase in which the carriers are localized through many-body interactions. The competition between the two resembles that believed to operate between stripes and superconductivity in high-T(c) materials. Here we report the existence of a hole crystal in the doped spin ladder of Sr14Cu24O41 using a resonant X-ray scattering technique. This phase exists without a detectable distortion in the structural lattice, indicating that it arises from many-body electronic effects. Our measurements confirm theoretical predictions, and support the picture that proximity to charge ordered states is a general property of superconductivity in copper oxides.
RESUMO
We present a combined resonant soft X-ray reflectivity and electric transport study of [Formula: see text]/[Formula: see text] field effect devices. The depth profiles with atomic layer resolution that are obtained from the resonant reflectivity reveal a pronounced temperature dependence of the two-dimensional electron liquid at the [Formula: see text]/[Formula: see text] interface. At room temperature the corresponding electrons are located close to the interface, extending down to 4 unit cells into the [Formula: see text] substrate. Upon cooling, however, these interface electrons assume a bimodal depth distribution: They spread out deeper into the [Formula: see text] and split into two distinct parts, namely one close to the interface with a thickness of about 4 unit cells and another centered around 9 unit cells from the interface. The results are consistent with theoretical predictions based on oxygen vacancies at the surface of the [Formula: see text] film and support the notion of a complex interplay between structural and electronic degrees of freedom.
RESUMO
We study the charge dynamics of the quasiparticle that forms when a single hole is doped in a two-dimensional antiferromagnet as described by the one-band t-t'-t"-J model, using a variational approximation that includes spin fluctuations in the vicinity of the hole. We explain why the spin fluctuations and the longer range hopping have complementary contributions to the quasiparticle dynamics, and thus why both are essential to obtain a dispersion in agreement with that measured experimentally. This is very different from the three-band Emery model in the strongly-correlated limit, where the same variational approximation shows that spin fluctuations have a minor effect on the quasiparticle dynamics. This difference proves that these one-band and three-band models describe qualitatively different quasiparticles in the insulating limit, and therefore that they cannot both be suitable to describe the physics of very underdoped cuprates.
RESUMO
Fine questions our interpretation of unidirectional stripes over a bidirectional checkerboard and illustrates his criticism by simulating a momentum space structure consistent with our data and corresponding to a checkerboard-looking real space density. Here, we use a local rotational-symmetry analysis to demonstrate that the simulated image is actually composed of locally unidirectional modulations of the charge density, consistent with our original conclusions.
RESUMO
After the discovery of stripelike order in lanthanum-based copper oxide superconductors, charge-ordering instabilities were observed in all cuprate families. However, it has proven difficult to distinguish between unidirectional (stripes) and bidirectional (checkerboard) charge order in yttrium- and bismuth-based materials. We used resonant x-ray scattering to measure the two-dimensional structure factor in the superconductor YBa2Cu3O(6+y) in reciprocal space. Our data reveal the presence of charge stripe order (i.e., locally unidirectional density waves), which may represent the true microscopic nature of charge modulation in cuprates. At the same time, we find that the well-established competition between charge order and superconductivity is stronger for charge correlations across the stripes than along them, which provides additional evidence for the intrinsic unidirectional nature of the charge order.
RESUMO
The high-temperature superconductor YBa2Cu3O(6+δ) consists of two main structural units--a bilayer of CuO2 planes that are central to superconductivity and a CuO(2+δ) chain layer. Although the functional role of the planes and chains has long been established, most probes integrate over both, which makes it difficult to distinguish the contribution of each. Here we use electron energy loss spectroscopy to directly resolve the plane and chain contributions to the electronic structure in YBa2Cu3O6 and YBa2Cu3O7. We directly probe the charge transfer of holes from the chains to the planes as a function of oxygen content, and show that the change in orbital occupation of Cu is large in the chain layer but modest in CuO2 planes, with holes in the planes doped primarily into the O 2p states. These results provide direct insight into the local electronic structure and charge transfers in this important high-temperature superconductor.
RESUMO
The high-Tc cuprate superconductors are close to antiferromagnetic order. Recent measurements of magnetic excitations have reported an intriguing similarity to the spin waves--magnons--of the antiferromagnetic insulating parent compounds, suggesting that magnons may survive in damped, broadened form throughout the phase diagram. Here we show by resonant inelastic X-ray scattering on Bi(2)Sr(2)CaCu(2)O(8+δ) (Bi-2212) that the analogy with spin waves is only partial. The magnon-like features collapse along the nodal direction in momentum space and exhibit a photon energy dependence markedly different from the Mott-insulating case. These observations can be naturally described by the continuum of charge and spin excitations of correlated electrons. The persistence of damped magnons could favour scenarios for superconductivity built from quasiparticles coupled to spin fluctuations. However, excitation spectra composed of particle-hole excitations suggest that superconductivity emerges from a coherent treatment of electronic spin and charge in the form of quasiparticles with very strong magnetic correlations.
RESUMO
The understanding of the origin of superconductivity in cuprates has been hindered by the apparent diversity of intertwining electronic orders in these materials. We combined resonant x-ray scattering (REXS), scanning-tunneling microscopy (STM), and angle-resolved photoemission spectroscopy (ARPES) to observe a charge order that appears consistently in surface and bulk, and in momentum and real space within one cuprate family, Bi2Sr(2-x)La(x)CuO(6+δ). The observed wave vectors rule out simple antinodal nesting in the single-particle limit but match well with a phenomenological model of a many-body instability of the Fermi arcs. Combined with earlier observations of electronic order in other cuprate families, these findings suggest the existence of a generic charge-ordered state in underdoped cuprates and uncover its intimate connection to the pseudogap regime.
RESUMO
Resonant elastic x-ray scattering (REXS) is an exquisite element-sensitive tool for the study of subtle charge, orbital, and spin superlattice orders driven by the valence electrons, which therefore escape detection in conventional x-ray diffraction (XRD). Although the power of REXS has been demonstrated by numerous studies of complex oxides performed in the soft x-ray regime, the cross section and photon wavelength of the material-specific elemental absorption edges ultimately set the limit to the smallest superlattice amplitude and periodicity one can probe. Here we show--with simulations and REXS on Mn-substituted Sr3Ru2O7--that these limitations can be overcome by performing resonant scattering experiments at the absorption edge of a suitably-chosen, dilute impurity. This establishes that--in analogy with impurity-based methods used in electron-spin-resonance, nuclear-magnetic resonance, and Mössbauer spectroscopy--randomly distributed impurities can serve as a non-invasive, but now momentum-dependent probe, greatly extending the applicability of resonant x-ray scattering techniques.