Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Allergy Clin Immunol ; 149(6): 2105-2115.e10, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34968528

RESUMO

BACKGROUND: Patients with antibody deficiency suffer chronic respiratory symptoms, recurrent exacerbations, and progressive airways disease despite systemic replacement of IgG. Little is known about the respiratory tract biology of these patients. OBJECTIVE: We sought to measure immunoglobulin levels, inflammatory cytokines, and mediators of tissue damage in serum and sputum from patients with antibody deficiency and healthy controls; to analyze the respiratory microbiome in the same cohorts. METHODS: We obtained paired sputum and serum samples from 31 immunocompetent subjects and 67 antibody-deficient patients, the latter divided on computed tomography scan appearance into "abnormal airways" (bronchiectasis or airway thickening) or "normal airways." We measured inflammatory cytokines, immunoglobulin levels, neutrophil elastase, matrix-metalloproteinase-9, urea, albumin, and total protein levels using standard assays. We used V3-V4 region 16S sequencing for microbiome analysis. RESULTS: Immunodeficient patients had markedly reduced IgA in sputum but higher concentrations of IgG compared with healthy controls. Inflammatory cytokines and tissue damage markers were higher in immunodeficient patients, who also exhibited dysbiosis with overrepresentation of pathogenic taxa and significantly reduced alpha diversity compared with immunocompetent individuals. These differences were seen regardless of airway morphology. Sputum matrix-metalloproteinase-9 and elastase correlated inversely with alpha diversity in the antibody-deficient group, as did sputum IgG, which correlated positively with several inflammatory markers, even after correction for albumin levels. CONCLUSIONS: Patients with antibody deficiency, even with normal lung imaging, exhibit inflammation and dysbiosis in their airways despite higher levels of IgG compared with healthy controls.


Assuntos
Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Albuminas/análise , Biomarcadores , Citocinas , Disbiose , Humanos , Imunoglobulina G , Inflamação , Sistema Respiratório , Escarro
2.
Mol Ecol ; 31(1): 252-265, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614264

RESUMO

The natural host ranges of many viruses are restricted to very specific taxa. Little is known about the molecular barriers between species that lead to the establishment of this restriction or generally prevent virus emergence in new hosts. Here, we identify genomic polymorphisms in a natural rodent host associated with a strong genetic barrier to the transmission of European Tula orthohantavirus (TULV). We analysed the very abrupt spatial transition between two major phylogenetic clades in TULV across the comparatively much wider natural hybrid zone between evolutionary lineages of their reservoir host, the common vole (Microtus arvalis). Genomic scans of 79,225 single nucleotide polymorphisms (SNPs) in 323 TULV-infected host individuals detected 30 SNPs that were consistently associated with the TULV clades CEN.S or EST.S in two replicate sampling transects. Focusing the analysis on 199 voles with evidence of genomic admixture at the individual level (0.1-0.9) supported statistical significance for all 30 loci. Host genomic variation at these SNPs explained up to 37.6% of clade-specific TULV infections. Genes in the vicinity of associated SNPs include SAHH, ITCH and two members of the Syngr gene family, which are involved in functions related to immune response or membrane transport. This study demonstrates the relevance of natural hybrid zones as systems not only for studying processes of evolutionary divergence and speciation, but also for the detection of evolving genetic barriers for specialized parasites.


Assuntos
Infecções por Hantavirus , Orthohantavírus , Vírus de RNA , Animais , Arvicolinae/genética , Filogenia
3.
PLoS Biol ; 17(2): e3000142, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30785873

RESUMO

The diversity of viruses probably exceeds biodiversity of eukaryotes, but little is known about the origin and emergence of novel virus species. Experimentation and disease outbreak investigations have allowed the characterization of rapid molecular virus adaptation. However, the processes leading to the establishment of functionally distinct virus taxa in nature remain obscure. Here, we demonstrate that incipient speciation in a natural host species has generated distinct ecological niches leading to adaptive isolation in an RNA virus. We found a very strong association between the distributions of two major phylogenetic clades in Tula orthohantavirus (TULV) and the rodent host lineages in a natural hybrid zone of the European common vole (Microtus arvalis). The spatial transition between the virus clades in replicated geographic clines is at least eight times narrower than between the hybridizing host lineages. This suggests a strong barrier for effective virus transmission despite frequent dispersal and gene flow among local host populations, and translates to a complete turnover of the adaptive background of TULV within a few hundred meters in the open, unobstructed landscape. Genetic differences between TULV clades are homogenously distributed in the genomes and mostly synonymous (93.1%), except for a cluster of nonsynonymous changes in the 5' region of the viral envelope glycoprotein gene, potentially involved in host-driven isolation. Evolutionary relationships between TULV clades indicate an emergence of these viruses through rapid differential adaptation to the previously diverged host lineages that resulted in levels of ecological isolation exceeding the progress of speciation in their vertebrate hosts.


Assuntos
Arvicolinae/virologia , Especiação Genética , Genoma , Infecções por Hantavirus/veterinária , Interações Hospedeiro-Patógeno/genética , Orthohantavírus/genética , Animais , Arvicolinae/classificação , Arvicolinae/genética , Europa (Continente)/epidemiologia , Fluxo Gênico , Orthohantavírus/classificação , Orthohantavírus/patogenicidade , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/genética , Infecções por Hantavirus/virologia , Hibridização Genética , Filogenia , Isolamento Reprodutivo , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/genética , Doenças dos Roedores/virologia
4.
BMC Neurol ; 22(1): 267, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850705

RESUMO

INTRODUCTION: Preclinical studies provided a strong rationale for a pathophysiological link between cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) and secondary brain injury after subarachnoid hemorrhage (SAH-SBI). In a single-center prospective observational clinical study, external ventricular drain (EVD) based CSF-Hb proved to be a promising biomarker to monitor for SAH-SBI. The primary objective of the HeMoVal study is to prospectively validate the association between EVD based CSF-Hb and SAH-SBI during the first 14 days post-SAH. Secondary objectives include the assessment of the discrimination ability of EVD based CSF-Hb for SAH-SBI and the definition of a clinically relevant range of EVD based CSF-Hb toxicity. In addition, lumbar drain (LD) based CSF-Hb will be assessed for its association with and discrimination ability for SAH-SBI. METHODS: HeMoVal is a prospective international multicenter observational cohort study. Adult patients admitted with aneurysmal subarachnoid hemorrhage (aSAH) are eligible. While all patients with aSAH are included, we target a sample size of 250 patients with EVD within the first 14 day after aSAH. Epidemiologic and disease-specific baseline measures are assessed at the time of study inclusion. In patients with EVD or LD, each day during the first 14 days post-SAH, 2 ml of CSF will be sampled in the morning, followed by assessment of the patients for SAH-SBI, co-interventions, and complications in the afternoon. After 3 months, a clinical follow-up will be performed. For statistical analysis, the cohort will be stratified into an EVD, LD and full cohort. The primary analysis will quantify the strength of association between EVD based CSF-Hb and SAH-SBI in the EVD cohort based on a generalized additive model. Secondary analyses include the strength of association between LD based CSF-Hb and SAH-SBI in the LD cohort based on a generalized additive model, as well as the discrimination ability of CSF-Hb for SAH-SBI based on receiver operating characteristic (ROC) analyses. DISCUSSION: We hypothesize that this study will validate the value of CSF-Hb as a biomarker to monitor for SAH-SBI. In addition, the results of this study will provide the potential base to define an intervention threshold for future studies targeting CSF-Hb toxicity after aSAH. STUDY REGISTRATION: ClinicalTrials.gov Identifier NCT04998370 . Date of registration: August 10, 2021.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Adulto , Biomarcadores , Lesões Encefálicas/complicações , Estudos de Coortes , Hemoglobina Falciforme , Hemoglobinas , Humanos , Estudos Multicêntricos como Assunto , Estudos Observacionais como Assunto , Estudos Prospectivos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/diagnóstico
6.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28794221

RESUMO

The time scales of pathogen evolution are of major concern in the context of public and veterinary health, epidemiology and evolutionary biology. Dating the emergence of a pathogen often relies on estimates of evolutionary rates derived from nucleotide sequence data. For many viruses, this has yielded estimates of evolutionary origins only a few hundred years in the past. Here we demonstrate through the incorporation of geographical information from virus sampling that evolutionary age estimates of two European hantaviruses are severely underestimated because of pervasive mutational saturation of nucleotide sequences. We detected very strong relationships between spatial distance and genetic divergence for both Puumala and Tula hantavirus-irrespective of whether nucleotide or derived amino acid sequences were analysed. Extrapolations from these relationships dated the emergence of these viruses most conservatively to at least 3700 and 2500 years ago, respectively. Our minimum estimates for the age of these hantaviruses are ten to a hundred times older than results from current non-spatial methods, and in much better accordance with the biogeography of these viruses and their respective hosts. Spatial information can thus provide valuable insights on the deeper time scales of pathogen evolution and improve our understanding of disease emergence.


Assuntos
Evolução Molecular , Orthohantavírus/genética , Sequência de Aminoácidos , Sequência de Bases , Filogenia , Análise Espacial
7.
Arch Virol ; 161(5): 1135-49, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26831932

RESUMO

Tula virus (TULV) is a vole-associated hantavirus with low or no pathogenicity to humans. In the present study, 686 common voles (Microtus arvalis), 249 field voles (Microtus agrestis) and 30 water voles (Arvicola spec.) were collected at 79 sites in Germany, Luxembourg and France and screened by RT-PCR and TULV-IgG ELISA. TULV-specific RNA and/or antibodies were detected at 43 of the sites, demonstrating a geographically widespread distribution of the virus in the studied area. The TULV prevalence in common voles (16.7 %) was higher than that in field voles (9.2 %) and water voles (10.0 %). Time series data at ten trapping sites showed evidence of a lasting presence of TULV RNA within common vole populations for up to 34 months, although usually at low prevalence. Phylogenetic analysis demonstrated a strong genetic structuring of TULV sequences according to geography and independent of the rodent species, confirming the common vole as the preferential host, with spillover infections to co-occurring field and water voles. TULV phylogenetic clades showed a general association with evolutionary lineages in the common vole as assessed by mitochondrial DNA sequences on a large geographical scale, but with local-scale discrepancies in the contact areas.


Assuntos
Orthohantavírus/genética , Animais , Arvicolinae/virologia , Sequência de Bases , Ensaio de Imunoadsorção Enzimática , Feminino , Alemanha , Masculino , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Viral/genética , RNA Viral/isolamento & purificação
8.
Curr Biol ; 21(9): 730-9, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21497087

RESUMO

BACKGROUND: Differences in floral traits, such as petal color, scent, morphology, or nectar quality and quantity, can lead to specific interactions with pollinators and may thereby cause reproductive isolation. Petunia provides an attractive model system to study the role of floral characters in reproductive isolation and speciation. The night-active hawkmoth pollinator Manduca sexta relies on olfactory cues provided by Petunia axillaris. In contrast, Petunia exserta, which displays a typical hummingbird pollination syndrome, is devoid of scent. The two species can easily be crossed in the laboratory, which makes it possible to study the genetic basis of the evolution of scent production and the importance of scent for pollinator behavior. RESULTS: In an F2 population derived from an interspecific cross between P. axillaris and P. exserta, we identified two quantitative trait loci (QTL) that define the difference between the two species' ability to produce benzenoid volatiles. One of these loci was identified as the MYB transcription factor ODORANT1. Reciprocal introgressions of scent QTL were used for choice experiments under controlled conditions. These experiments demonstrated that the hawkmoth M. sexta prefers scented plants and that scent determines choice at a short distance. When exposed to conflicting cues of color versus scent, the insects display no preference, indicating that color and scent are equivalent cues. CONCLUSION: Our results show that scent is an important flower trait that defines plant-pollinator interactions at the level of individual plants. The genetic basis underlying such a major phenotypic difference appears to be relatively simple and may enable rapid loss or gain of scent through hybridization.


Assuntos
Flores/química , Especiação Genética , Manduca/fisiologia , Odorantes/análise , Petunia/genética , Polinização/fisiologia , Locos de Características Quantitativas/genética , Animais , Comportamento Apetitivo/fisiologia , Cromatografia Gasosa , Cruzamentos Genéticos , Flores/genética , Genética Populacional , Espectrometria de Massas , Petunia/fisiologia , Polinização/genética , Especificidade da Espécie , Fatores de Transcrição/genética , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa