Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(2): 33, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526768

RESUMO

Industrial hemp (Cannabis sativa L.) is a highly recalcitrant plant under in vitro conditions that can be overcome by employing external stimuli. Hemp seeds were primed with 2.0-3.0% hydrogen peroxide (H2O2) followed by culture under different Light Emitting Diodes (LEDs) sources. Priming seeds with 2.0% yielded relatively high germination rate, growth, and other biochemical and enzymatic activities. The LED lights exerted a variable impact on Cannabis germination and enzymatic activities. Similarly, variable responses were observed for H2O2 × Blue-LEDs combination. The results were also analyzed by multiple regression analysis, followed by an investigation of the impact of both factors by Pareto chart and normal plots. The results were optimized by contour and surface plots for all parameters. Response surface optimizer optimized 2.0% H2O2 × 918 LUX LEDs for maximum scores of all output parameters. The results were predicted by employing Multilayer Perceptron (MLP), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) algorithms. Moreover, the validity of these models was assessed by using six different performance metrics. MLP performed better than RF and XGBoost models, considering all six-performance metrics. Despite the differences in scores, the performance indicators for all examined models were quite close to each other. It can easily be concluded that all three models are capable of predicting and validating data for cannabis seeds primed with H2O2 and grown under different LED lights.


Assuntos
Cannabis , Peróxido de Hidrogênio , Inteligência Artificial , Germinação
2.
Microb Pathog ; 185: 106430, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940063

RESUMO

Fungi, bacteria, and viruses cause highly devastating diseases in species of the Cucurbitaceae family. Powdery mildew, a fungal disease, is one of the most important diseases of cucurbits. The pathogen, Podosphaera xanthii, is the most common causal agent of powdery mildew disease within cucurbits. The aim of this study was to investigate the effectiveness of the combined formulations of two biological agents, B. subtilis and B. thuringiensis, in combating powdery mildew disease, which represents a significant threat to C. pepo cultivation in Kayseri, Türkiye. The efficacy of six different treatments in controlling the disease agent P. xanthii was evaluated in susceptible zucchini genotypes. It was found that full-dose bacteria dilution application, before and after powdery mildew infection, as well as three- and five-fold bacteria dilutions application significantly prevented (1-2 scale value) powdery mildew disease on infected zucchini plants than the control application. There was a decrease in vegetative growth in the control-treated crops while plant growth increased significantly in bacterial-treated crops. Also, our findings showed that combined formulations made from Bacillus subtilis (61.29e and 3.3a strains) and Bacillus thuringiensis (2B3-1 and 2B2-2 strains) significantly increased the synthesis of plant defense enzymes such as DPPH, antioxidant, proline production, total phenolic substance, and total flavonoid content. The application of B + PM resulted in the highest enzyme contents, quantified as follows: 22.91 mg AAE/g antioxidant, 2.01 mg/g KU proline, 10.03 mg GAE/g TPC, and 7.756 mg CE/g TFC. These enzymes may have played vital roles in triggering zucchini defense mechanisms, thereby significantly preventing powdery disease in the bacteria-treated crops.


Assuntos
Bacillus thuringiensis , Cucurbita , Cucurbita/microbiologia , Bacillus subtilis , Antioxidantes , Prolina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa