Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Planta Med ; 90(6): 426-439, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452806

RESUMO

Plants are an incredible source of metabolites showing a wide range of biological activities. Among these, there are the alkaloids, which have been exploited for medical purposes since ancient times. Nowadays, many plant-derived alkaloids are the main components of drugs used as therapy for different human diseases. This review deals with providing an overview of the alkaloids used to treat eye diseases, describing the historical outline, the plants from which they are extracted, and the clinical and molecular data supporting their therapeutic activity. Among the different alkaloids that have found application in medicine so far, atropine and pilocarpine are the most characterized ones. Conversely, caffeine and berberine have been proposed for the treatment of different eye disorders, but further studies are still necessary to fully understand their clinical value. Lastly, the alkaloid used for managing hypertension, reserpine, has been recently identified as a potential drug for ameliorating retinal disorders. Other important aspects discussed in this review are different solutions for alkaloid production. Given that the industrial production of many of the plant-derived alkaloids still relies on extraction from plants, and the chemical synthesis can be highly expensive and poorly efficient, alternative methods need to be found. Biotechnologies offer a multitude of possibilities to overcome these issues, spanning from genetic engineering to synthetic biology for microorganisms and bioreactors for plant cell cultures. However, further efforts are needed to completely satisfy the pharmaceutical demand.


Assuntos
Alcaloides , Oftalmopatias , Humanos , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Alcaloides/química , Oftalmopatias/tratamento farmacológico , Atropina/farmacologia , Pilocarpina , Plantas Medicinais/química , Cafeína/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Reserpina/farmacologia
2.
Trends Biochem Sci ; 43(11): 852-853, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30145017

RESUMO

A recently published paper applies cryo-electron microscopy (EM) studies and biochemical/genetic approaches for the elucidation of the mechanisms linking nucleotide binding by ATPases, proteasome conformation dynamics, and gate opening of the 20S core particle. These insights potentially represent a milestone in our understanding of the structural dynamics of the 26S proteasome.


Assuntos
Microscopia Crioeletrônica , Complexo de Endopeptidases do Proteassoma , Adenosina Trifosfatases , Conformação Molecular
3.
Bioorg Med Chem ; 66: 116813, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35576657

RESUMO

A reduced proteasome activity tiles excessive amyloid growth during the progress of protein conformational diseases (PCDs). Hence, the development of safe and effective proteasome enhancers represents an attractive target for the therapeutic treatment of these chronic disorders. Here we analyze two natural diastereoisomers belonging to the family of flavonolignans, Sil A and Sil B, by evaluating their capacity to increase proteasome activity. Enzyme assays carried out on yeast 20S (y20S) proteasome and in parallel on a permanently "open gate" mutant (α3ΔN) evidenced that Sil B is a more efficient 20S activator than Sil A. Conversely, in the case of human 20S proteasome (h20S) a higher affinity and more efficient activation is observed for Sil A. Driven by experimental data, computational studies further demonstrated that the taxifolin group of both diastereoisomers plays a crucial role in their anchoring to the α5/α6 groove of the outer α-ring. However, due to the different stereochemistry at C-7" and C-8" of ring D, only Sil A was able to reproduce the interactions responsible for h20S proteasome activation induced by their cognate regulatory particles. The provided silybins/h20S interaction models allowed us to rationalize their different ability to activate the peptidase activities of h20S and y20S. Our results provide structural details concerning the important role played by stereospecific interactions in driving Sil A and Sil B binding to the 20S proteasome and may support future rational design of proteasome enhancers.


Assuntos
Complexo de Endopeptidases do Proteassoma , Saccharomyces cerevisiae , Citoplasma/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Silibina
4.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232676

RESUMO

Intraocular pressure (IOP) is considered an important modifiable risk factor for glaucoma, which is known as the second leading cause of blindness worldwide. However, lowering the IOP is not always sufficient to preserve vision due to other non-IOP-dependent mechanisms being involved. To improve outcomes, adjunctive therapies with IOP-independent targets are required. To date, no studies have shown the effect of citicoline on the trabecular meshwork (TM), even though it is known to possess neuroprotective/enhancement properties and multifactorial mechanisms of action. Given that reactive oxygen species seem to be involved in glaucomatous cascade, in this present study, an advanced millifluidic in vitro model was used to evaluate if citicoline could exert a valid TM protection against oxidative stress. To this end, the cellular behavior, in terms of viability, apoptosis, mitochondrial state, senescence and pro-inflammatory cytokines, on 3D human TM cells, treated either with H2O2 alone or cotreated with citicoline, was analyzed. Our preliminary in vitro results suggest a counteracting effect of citicoline eye drops against oxidative stress on TM cells, though further studies are necessary to explore citicoline's potential as a TM-target therapy.


Assuntos
Glaucoma , Malha Trabecular , Citidina Difosfato Colina/farmacologia , Citocinas/farmacologia , Glaucoma/tratamento farmacológico , Humanos , Peróxido de Hidrogênio/farmacologia , Pressão Intraocular , Soluções Oftálmicas/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/farmacologia
5.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072647

RESUMO

Steroid-induced glaucoma is a severe pathological condition, sustained by a rapidly progressive increase in intraocular pressure (IOP), which is diagnosed in a subset of subjects who adhere to a glucocorticoid (GC)-based therapy. Molecular and clinical studies suggest that either natural or synthetic GCs induce a severe metabolic dysregulation of Trabecular Meshwork Cells (TMCs), an endothelial-derived histotype with phagocytic and secretive functions which lay at the iridocorneal angle in the anterior segment of the eye. Since TMCs physiologically regulate the composition and architecture of trabecular meshwork (TM), which is the main outflow pathway of aqueous humor, a fluid which shapes the eye globe and nourishes the lining cell types, GCs are supposed to trigger a pathological remodeling of the TM, inducing an IOP increase and retina mechanical compression. The metabolic dysregulation of TMCs induced by GCs exposure has never been characterized at the molecular detail. Herein, we report that, upon dexamethasone exposure, a TMCs strain develops a marked inhibition of the autophagosome biogenesis pathway through an enhanced turnover of two members of the Ulk-1 complex, the main platform for autophagy induction, through the Ubiquitin Proteasome System (UPS).


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Dexametasona/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/metabolismo , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proliferação de Células/efeitos dos fármacos , Dexametasona/efeitos adversos , Suscetibilidade a Doenças , Glaucoma/etiologia , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
6.
Mol Cell Biochem ; 463(1-2): 101-113, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31595423

RESUMO

Nutritional supplements are traditionally employed for overall health and for managing some health conditions, although controversies are found concerning the role of antioxidants-mediated benefits in vivo. Consistently with its critical role in systemic redox buffering, red blood cell (RBC) is recognized as a biologically relevant target to investigate the effects of oxidative stress. In RBC, reduction of the ATP levels and adenylate energy charge brings to disturbance in intracellular redox status. In the present work, several popular antioxidant supplements were orally administrated to healthy adults and examined for their ability to induce changes on the energy metabolism and oxidative status in RBC. Fifteen volunteers (3 per group) were treated for 30 days per os with epigallocatechin gallate (EGCG) (1 g green tea extract containing 50% EGCG), resveratrol (325 mg), coenzyme Q10 (CoQ10) (300 mg), vitamin C (1 g), and vitamin E (400 U.I.). Changes in the cellular levels of high-energy compounds (i.e., ATP and its catabolites, NAD and GTP), GSH, GSSG, and malondialdehyde (MDA) were simultaneously analyzed by ion-pairing HPLC. Response to oxidative stress was further investigated through the oxygen radical absorptive capacity (ORAC) assay. According to our experimental approach, (i) CoQ10 appeared to be the most effective antioxidant inducing a high increase in ATP/ADP, ATP/AMP, GSH/GSSG ratio and ORAC value and, in turn, a reduction of NAD concentration, (ii) EGCG modestly modulated the intracellular energy charge potential, while (iii) Vitamin E, vitamin C, and resveratrol exhibited very weak effects. Given that, the antioxidant potential of CoQ10 was additionally assessed in a pilot study which considered individuals suffering from Rett syndrome (RTT), a severe X-linked neuro-developmental disorder in which RBC oxidative damages provide biological markers for redox imbalance and chronic hypoxemia. RTT patients (n = 11), with the typical clinical form, were supplemented for 12 months with CoQ10 (300 mg, once daily). Level of lipid peroxidation (MDA production) and energy state of RBCs were analyzed at 2 and 12 months. Our data suggest that CoQ10 may significantly attenuate the oxidative stress-induced damage in RTT erythrocytes.


Assuntos
Antioxidantes/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Eritrócitos , Síndrome de Rett , Administração Oral , Adolescente , Adulto , Criança , Pré-Escolar , Eritrócitos/metabolismo , Eritrócitos/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia
7.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003385

RESUMO

The present study provides new evidence that cationic porphyrins may be considered as tunable platforms to interfere with the structural "key code" present on the 20S proteasome α-rings and, by consequence, with its catalytic activity. Here, we describe the functional and conformational effects on the 20S proteasome induced by the cooperative binding of the tri-cationic 5-(phenyl)-10,15,20-(tri N-methyl-4-pyridyl) porphyrin (Tris-T4). Our integrated kinetic, NMR, and in silico analysis allowed us to disclose a complex effect on the 20S catalytic activity depending on substrate/porphyrin concentration. The analysis of the kinetic data shows that Tris-T4 shifts the relative populations of the multiple interconverting 20S proteasome conformations leading to an increase in substrate hydrolysis by an allosteric pathway. Based on our Tris-T4/h20S interaction model, Tris-T4 is able to affect gating dynamics and substrate hydrolysis by binding to an array of negatively charged and hydrophobic residues present on the protein surface involved in the 20S molecular activation by the regulatory proteins (RPs). Accordingly, despite the fact that Tris-T4 also binds to the α3ΔN mutant, allosteric modulation is not observed since the molecular mechanism connecting gate dynamics with substrate hydrolysis is impaired. We envisage that the dynamic view of the 20S conformational equilibria, activated through cooperative Tris-T4 binding, may work as a simplified model for a better understanding of the intricate network of 20S conformational/functional states that may be mobilized by exogenous ligands, paving the way for the development of a new generation of proteasome allosteric modulators.


Assuntos
Regulação Alostérica/genética , Cátions/metabolismo , Porfirinas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Catálise , Cátions/farmacologia , Citoplasma/genética , Humanos , Cinética , Ressonância Magnética Nuclear Biomolecular , Porfirinas/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica/efeitos dos fármacos
8.
Crit Rev Biochem Mol Biol ; 52(5): 554-582, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28635330

RESUMO

Insulin-degrading enzyme (IDE) is a ubiquitous zinc peptidase of the inverzincin family, which has been initially discovered as the enzyme responsible for insulin catabolism; therefore, its involvement in the onset of diabetes has been largely investigated. However, further studies on IDE unraveled its ability to degrade several other polypeptides, such as ß-amyloid, amylin, and glucagon, envisaging the possible implication of IDE dys-regulation in the "aggregopathies" and, in particular, in neurodegenerative diseases. Over the last decade, a novel scenario on IDE biology has emerged, pointing out a multi-functional role of this enzyme in several basic cellular processes. In particular, latest advances indicate that IDE behaves as a heat shock protein and modulates the ubiquitin-proteasome system, suggesting a major implication in proteins turnover and cell homeostasis. In addition, recent observations have highlighted that the regulation of glucose metabolism by IDE is not merely based on its largely proposed role in the degradation of insulin in vivo. There is increasing evidence that improper IDE function, regulation, or trafficking might contribute to the etiology of metabolic diseases. In addition, the enzymatic activity of IDE is affected by metals levels, thus suggesting a role also in the metal homeostasis (metallostasis), which is thought to be tightly linked to the malfunction of the "quality control" machinery of the cell. Focusing on the physiological role of IDE, we will address a comprehensive vision of the very complex scenario in which IDE takes part, outlining its crucial role in interconnecting several relevant cellular processes.


Assuntos
Insulisina/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Insulisina/fisiologia , Agregação Patológica de Proteínas/enzimologia , Agregação Patológica de Proteínas/patologia , Conformação Proteica
9.
J Biol Inorg Chem ; 24(1): 21-29, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30390140

RESUMO

Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c, which is considered as a heme-protein model. Here, the reductive nitrosylation of ferric MP11 (MP11(III)) under anaerobic conditions has been investigated between pH 7.4 and 9.2, at T = 20.0 °C. At pH ≤ 7.7, NO binds reversibly to MP11(III) leading to the formation of the MP11(III)-NO complex. However, between pH 8.2 and 9.2, the addition of NO to MP11(III) leads to the formation of ferrous nitrosylated MP11(II) (MP11(II)-NO). In fact, the transient MP11{FeNO}6 species is converted to ferrous deoxygenated MP11 (MP11(II)) by OH-- and H2O-based catalysis, which represents the rate-limiting step of the whole reaction. Then, MP11(II) binds NO very rapidly leading to MP11(II)-NO formation. Over the whole pH range explored, the apparent values of kon, koff, and K (= koff/kon) for MP11(III)(-NO) (de)nitrosylation are essentially pH independent, ranging between 5.8 × 105 M-1 s-1 and 1.6 × 106 M-1 s-1, between 1.9 s-1 and 3.7 s-1, and between 1.4 × 10-6 M and 4.6 × 10-6 M, respectively. Values of the apparent pseudo-first-order rate constant for the MP11{FeNO}6 conversion to MP11(II) (i.e., h) increase linearly with pH; the apparent values [Formula: see text] and [Formula: see text] are 7.2 × 102 M-1 s-1 and 2.5 × 10-4 s-1, respectively. Present data confirm that MP11 is a useful molecular model to highlight the role of the protein matrix on the heme-based reactivity.


Assuntos
Grupo dos Citocromos c/metabolismo , Peroxidases/metabolismo , Animais , Grupo dos Citocromos c/química , Cavalos , Compostos de Ferro/química , Compostos de Ferro/metabolismo , Miocárdio/enzimologia , Compostos Nitrosos/química , Compostos Nitrosos/metabolismo , Oxirredução , Peroxidases/química
10.
Cell Mol Life Sci ; 75(18): 3441-3456, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29594388

RESUMO

The interaction of insulin-degrading enzyme (IDE) with the main intracellular proteasome assemblies (i.e, 30S, 26S and 20S) was analyzed by enzymatic activity, mass spectrometry and native gel electrophoresis. IDE was mainly detected in association with assemblies with at least one free 20S end and biochemical investigations suggest that IDE competes with the 19S in vitro. IDE directly binds the 20S and affects its proteolytic activities in a bimodal fashion, very similar in human and yeast 20S, inhibiting at (IDE) ≤ 30 nM and activating at (IDE) ≥ 30 nM. Only an activating effect is observed in a yeast mutant locked in the "open" conformation (i.e., the α-3ΔN 20S), envisaging a possible role of IDE as modulator of the 20S "open"-"closed" allosteric equilibrium. Protein-protein docking in silico proposes that the interaction between IDE and the 20S could involve the C-term helix of the 20S α-3 subunit which regulates the gate opening of the 20S.


Assuntos
Insulisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Regulação Alostérica , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Células HEK293 , Humanos , Insulisina/química , Cinética , Simulação de Acoplamento Molecular , Eletroforese em Gel de Poliacrilamida Nativa , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Espectrometria de Massas em Tandem , Leveduras/metabolismo
11.
Chemotherapy ; 64(2): 62-80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31387102

RESUMO

BACKGROUND: Immune checkpoints are critical regulatory pathways of the immune system which finely tune the response to biological threats. Among them, the CD-28/CTLA-4 and PD-1/PD-L1 axes play a key role in tumour immune escape and are well-established targets of cancer immunotherapy. SUMMARY: The clinical experience accumulated to date provides unequivocal evidence that anti-CTLA-4, PD-1, or PD-L1 monoclonal antibodies, used as monotherapy or in combination regimes, are effective in a variety of advanced/metastatic types of cancer, with improved clinical outcomes compared to conventional chemotherapy. However, the therapeutic success is currently restricted to a limited subset of patients and reliable predictive biomarkers are still lacking. Key Message: The identification and characterization of additional co-inhibitory pathways as novel pharmacological targets to improve the clinical response in refractory patients has led to the development of different immune checkpoint inhibitors, the activities of which are currently under investigation. In this review, we discuss recent literature data concerning the mechanisms of action of next-generation monoclonal antibodies targeting LAG-3, TIM-3, and TIGIT co-inhibitory molecules that are being explored in clinical trials, as single agents or in combination with other immune-stimulating agents.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias/tratamento farmacológico , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/metabolismo , Ensaios Clínicos como Assunto , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Microambiente Tumoral , Proteína do Gene 3 de Ativação de Linfócitos
12.
Mol Cell Biochem ; 426(1-2): 205-213, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28063007

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder, mainly affecting females, which is associated to a mutation on the methyl-CpG-binding protein 2 gene. In the pathogenesis and progression of classic RTT, red blood cell (RBC) morphology has been shown to be an important biosensor for redox imbalance and chronic hypoxemia. Here we have evaluated the impact of oxidation and redox imbalance on several functional properties of RTT erythrocytes. In particular, we report for the first time a stopped-flow measurement of the kinetics of oxygen release by RBCs and the analysis of the intrinsic affinity of the hemoglobin (Hb). According to our experimental approach, RBCs from RTT patients do not show any intrinsic difference with respect to those from healthy controls neither in Hb's oxygen-binding affinity nor in O2 exchange processes at 37 °C. Therefore, these factors do not contribute to the observed alteration of the respiratory function in RTT patients. Moreover, the energy metabolism of RBCs, from both RTT patients and controls, was evaluated by ion-pairing HPLC method and related to the level of malondialdehyde and to the oxidative radical scavenging capacity of red cells. Results have clearly confirmed significant alterations in antioxidant defense capability, adding important informations concerning the high-energy compound levels in RBCs of RTT subjects, underlying possible correlations with inflammatory tissue alterations.


Assuntos
Metabolismo Energético , Eritrócitos/metabolismo , Malondialdeído/sangue , Consumo de Oxigênio , Oxigênio/sangue , Síndrome de Rett/sangue , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos
14.
J Biol Inorg Chem ; 21(4): 511-22, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27229515

RESUMO

Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c (cytc). MP11 is characterized by a covalently linked solvent-exposed heme group, the heme-Fe atom being axially coordinated by a histidyl residue. Here, the reactions of ferrous and ferric MP11 (MP11-Fe(II) and MP11-Fe(III), respectively) with cyanide have been investigated from the kinetic and thermodynamic viewpoints, at pH 7.0 and 20.0 °C. Values of the second-order rate constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 4.5 M(-1) s(-1) and 8.9 × 10(3) M(-1) s(-1), respectively. Values of the first-order rate constant for cyanide dissociation from ligated MP11-Fe(II) and MP11-Fe(III) are 1.8 × 10(-1) s(-1) and 1.5 × 10(-3) s(-1), respectively. Values of the dissociation equilibrium constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 3.7 × 10(-2) and 1.7 × 10(-7) M, respectively, matching very well with those calculated from kinetic parameters so that no intermediate species seem to be involved in the ligand-binding process. The pH-dependence of cyanide binding to MP11-Fe(III) indicates that CN(-) is the only binding species. Present results have been analyzed in parallel with those of several heme-proteins, suggesting that (1) the ligand accessibility to the metal center and cyanide ionization may modulate the formation of heme-Fe-cyanide complexes, and (2) the general polarity of the heme pocket and/or hydrogen bonding of the heme-bound ligand may affect cyanide exit from the protein matrix. Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c. Penta-coordinated MP11 displays a very high reactivity towards cyanide, whereas the reactivity of hexa-coordinated horse heart cytochrome c is very low.


Assuntos
Cianetos/metabolismo , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Peroxidases/metabolismo , Animais , Sítios de Ligação , Cianetos/química , Compostos Férricos/química , Compostos Ferrosos/química , Cinética , Peroxidases/química , Cachalote , Termodinâmica
15.
J Biol Inorg Chem ; 21(3): 421-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27010463

RESUMO

Horse heart carboxymethylated cytc (CM-cytc) displays myoglobin-like properties. Here, the effect of cardiolipin (CL) liposomes on the nitrite reductase activity of ferrous CM-cytc [CM-cytc-Fe(II)], in the presence of sodium dithionite, is reported between pH 5.5 and 7.6, at 20.0 °C. Cytc-Fe(II) displays a very low value of the apparent second-order rate constant for the NO2 (-)-mediated conversion of cytc-Fe(II) to cytc-Fe(II)-NO [k on = (7.3 ± 0.7) × 10(-2) M(-1) s(-1); at pH 7.4], whereas the value of k on for NO2 (-) reduction by CM-cytc-Fe(II) is 1.1 ± 0.2 M(-1) s(-1) (at pH 7.4). CL facilitates the NO2 (-)-mediated nitrosylation of CM-cytc-Fe(II) in a dose-dependent manner, the value of k on for the NO2 (-)-mediated conversion of CL-CM-cytc-Fe(II) to CL-CM-cytc-Fe(II)-NO (5.6 ± 0.6 M(-1) s(-1); at pH 7.4) being slightly higher than that for the NO2 (-)-mediated conversion of CL-cytc-Fe(II) to CL-cytc-Fe(II)-NO (2.6 ± 0.3 M(-1) s(-1); at pH 7.4). The apparent affinity of CL for CM-cytc-Fe(II) is essentially pH independent, the average value of B being (1.3 ± 0.3) × 10(-6) M. In the absence and presence of CL liposomes, the nitrite reductase activity of CM-cytc-Fe(II) increases linearly on lowering pH and the values of the slope of the linear fittings of Log k on versus pH are -1.05 ± 0.07 and -1.03 ± 0.03, respectively, reflecting the involvement of one proton for the formation of the transient ferric form, NO, and OH(-). These results indicate that Met80 carboxymethylation and CL binding cooperate in the stabilization of the highly reactive heme-Fe atom of CL-CM-cytc.


Assuntos
Cardiolipinas/metabolismo , Citocromos c/metabolismo , Nitrito Redutases/metabolismo , Animais , Compostos Ferrosos/metabolismo , Coração , Cavalos , Metilação
16.
J Biol Inorg Chem ; 20(1): 101-108, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450414

RESUMO

The properties of three novel Platinum(II) compounds toward the insulin-degrading enzyme (IDE) enzymatic activity have been investigated under physiological conditions. The rationale of this study resides on previous observations that these compounds, specifically designed and synthesized by some of us, induce apoptosis in various cancer cell lines, whereas IDE has been proposed as a putative oncogene involved in neuroblastoma onset and progression. Two of these compounds, namely [PtCl(O,O'-acac)(DMSO)] and [Pt(O,O'-acac)(γ-acac)(DMS)], display a modulatory behavior, wherefore activation or inhibition of IDE activity occurs over different concentration ranges (suggesting the existence of two binding sites on the enzyme). On the other hand, [Pt(O,O'-acac)(γ-acac)(DMSO)] shows a typical competitive inhibitory pattern, characterized by a meaningful affinity constant (K i  = 0.95 ± 0.21 µM). Although all three compounds induce cell death in neuroblastoma SHSY5Y cells at concentrations exceeding 2 µM, the two modulators facilitate cells' proliferation at concentrations ≤ 1.5 µM, whereas the competitive inhibitor [Pt(O,O'-acac)(γ-acac)(DMSO)] only shows a pro-apoptotic activity at all investigated concentrations. These features render the [Pt(O,O'-acac)(γ-acac)(DMSO)] a promising "lead compound" for the synthesis of IDE-specific inhibitors (not characterized yet) with therapeutic potentiality.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Insulisina/química , Compostos Organoplatínicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Insulisina/antagonistas & inibidores , Cinética , Neuroblastoma/tratamento farmacológico , Compostos Organoplatínicos/química
17.
J Biol Chem ; 288(4): 2281-9, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23188819

RESUMO

Insulin-degrading enzyme (IDE) is a highly conserved zinc metallopeptidase that is ubiquitously distributed in human tissues, and particularly abundant in the brain, liver, and muscles. IDE activity has been historically associated with insulin and ß-amyloid catabolism. However, over the last decade, several experimental findings have established that IDE is also involved in a wide variety of physiopathological processes, including ubiquitin clearance and Varicella Zoster Virus infection. In this study, we demonstrate that normal and malignant cells exposed to different stresses markedly up-regulate IDE in a heat shock protein (HSP)-like fashion. Additionally, we focused our attention on tumor cells and report that (i) IDE is overexpressed in vivo in tumors of the central nervous system (CNS); (ii) IDE-silencing inhibits neuroblastoma (SHSY5Y) cell proliferation and triggers cell death; (iii) IDE inhibition is accompanied by a decrease of the poly-ubiquitinated protein content and co-immunoprecipitates with proteasome and ubiquitin in SHSY5Y cells. In this work, we propose a novel role for IDE as a heat shock protein with implications in cell growth regulation and cancer progression, thus opening up an intriguing hypothesis of IDE as an anticancer target.


Assuntos
Insulisina/fisiologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Sequência Conservada , Regulação para Baixo , Proteínas de Choque Térmico/metabolismo , Humanos , Imuno-Histoquímica/métodos , Insulina/metabolismo , Insulisina/metabolismo , Células Jurkat , Metaloproteases/química , Microscopia de Fluorescência/métodos , Neuroblastoma/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Tempo
18.
Antioxidants (Basel) ; 13(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38929104

RESUMO

Nitric oxide (NO) synthesis, signaling, and scavenging is associated to relevant physiological and pathological events. In all tissues and organs, NO levels and related functions are regulated at different levels, with heme proteins playing pivotal roles. Here, we focus on the structural changes related to the different binding modes of NO to heme-Fe(II), as well as the modulatory effects of this diatomic messenger on heme-protein functions. Specifically, the ability of heme proteins to bind NO at either the distal or proximal side of the heme and the transient interchanging of the binding site is reported. This sheds light on the regulation of O2 supply to tissues with high metabolic activity, such as the retina, where a precise regulation of blood flow is necessary to meet the demand of nutrients.

19.
Clin Epigenetics ; 16(1): 109, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155390

RESUMO

BACKGROUND: Histone deacetylases (HDACs) are crucial regulators of gene expression, DNA synthesis, and cellular processes, making them essential targets in cancer research. HDAC6, specifically, influences protein stability and chromatin dynamics. Despite HDAC6's potential therapeutic value, its exact role in gene regulation and chromatin remodeling needs further clarification. This study examines how HDAC6 inactivation influences lysine acetyltransferase P300 stabilization and subsequent effects on chromatin structure and function in cancer cells. METHODS AND RESULTS: We employed the HDAC6 inhibitor ITF3756, siRNA, or CRISPR/Cas9 gene editing to inactivate HDAC6 in different epigenomic backgrounds. Constantly, this inactivation led to significant changes in chromatin accessibility, particularly increased acetylation of histone H3 lysines 9, 14, and 27 (ATAC-seq and H3K27Ac ChIP-seq analysis). Transcriptomics, proteomics, and gene ontology analysis revealed gene changes in cell proliferation, adhesion, migration, and apoptosis. Significantly, HDAC6 inactivation altered P300 ubiquitination, stabilizing P300 and leading to downregulating genes critical for cancer cell survival. CONCLUSIONS: Our study highlights the substantial impact of HDAC6 inactivation on the chromatin landscape of cancer cells and suggests a role for P300 in contributing to the anticancer effects. The stabilization of P300 with HDAC6 inhibition proposes a potential shift in therapeutic focus from HDAC6 itself to its interaction with P300. This finding opens new avenues for developing targeted cancer therapies, improving our understanding of epigenetic mechanisms in cancer cells.


Assuntos
Cromatina , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Humanos , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/antagonistas & inibidores , Cromatina/genética , Cromatina/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Acetilação/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Histonas/metabolismo , Ubiquitinação/efeitos dos fármacos
20.
Chem Res Toxicol ; 26(12): 1821-31, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24144187

RESUMO

The physiological functions of neuroglobin (Ngb), the heme protein of the globin family expressed in the nervous tissue, have not yet been clarified. Besides O2 storage and homeostasis, Ngb is thought to play a role in neuroprotection as a scavenger of toxic reactive species generated in vivo under conditions of oxidative stress. Herein, the interaction of Ngb with the quinones generated by oxidation of catecholamines (dopamine, norepinephrine) and catechol estrogens (2-hydroxyestradiol and 4-hydroxyestradiol), which have been implicated in neurodegenerative pathologies like Parkinson's and Alzheimer's diseases, has been investigated. The cytotoxicity of quinones has been ascribed to the derivatization of amino acid residues (mainly cysteine) in proteins through the formation of covalent bonds with the aromatic rings. Combined studies of tandem mass spectrometry and protein unfolding indicate the presence of quinone-promoted modifications in all of the Ngb derivatives analyzed (i.e., obtained employing either catecholamines or catechol estrogens as the source of the reactive species). Among protein residues, the highest reactivity of cysteines (Cys46, Cys55, and Cys120 in human Ngb) toward quinone species has been confirmed, and the dependence of the extent of protein modification on the method employed for catechol oxidation has been observed. When the oxidation reaction proceeds by one-electron steps, the involvement of semiquinone reactivity has been observed. The whole analysis of the data of Ngb modification suggests that the catecholamine-oxidation products can extensively modify proteins (likely by catecholamine oligomers, the compounds initially formed during the transformation of catecholamine to melanin). The modification mediated by catechol estrogens is less pronounced but strongly affects the interactions with the solvent as well as the protein stability.


Assuntos
Globinas/química , Proteínas do Tecido Nervoso/química , Quinonas/química , Catecolaminas/química , Catecolaminas/metabolismo , Cisteína/química , Cisteína/metabolismo , Globinas/metabolismo , Humanos , Peróxido de Hidrogênio/química , Cinética , Modelos Moleculares , Estrutura Molecular , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina , Oxirredução , Quinonas/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa