Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; 18(2): 84-89, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33315521

RESUMO

Surgical N95 filtering facepiece respirators (surgical N95 FFRs) are National Institute for Occupational Safety and Health-approved N95 filtering facepiece respirators (N95 FFRs) cleared by the Food and Drug Administration for resistance to liquid penetration and flammability. A recent study showed that several N95 FFR models performed as well as surgical N95 FFRs in synthetic blood penetration tests that evaluate resistance to penetration by horizontal projection. This aspect, in addition to the influence of other factors on liquid penetration, are not well studied. To address this issue, the effect of liquid volume (1 mL and 2 mL), spray velocity (450 cm/sec and 635 cm/sec), and liquid composition (synthetic blood and diluted synthetic blood) were evaluated. Four types of common protective devices were studied: N95 FFRs, surgical N95 FFRs, surgical masks, and powered air-purifying respirator (PAPR) hoods. For each protective device type, five models were analyzed using a protocol based on the F1862 ASTM International (2017) test method. Reduced liquid volume had a significant effect in only 3 of 20 models. Increased velocity had significantly greater penetration in 9 of 20 models. Diluted synthetic blood had significantly more penetration in 8 of 20 models. This last result was not expected because, in hydrostatic tests, surface tension of the diluted blood would be expected to reduce penetrability; however, across all models tested, data showed that the diluted spray was more penetrable. The study results suggest that fluid composition may be as important as velocity when considering liquid spray penetration. Furthermore, the penetrability of a spray may be inversely related to the penetrability through direct hydrostatic contact.


Assuntos
Respiradores N95 , Dispositivos de Proteção Respiratória , Filtração , Máscaras , Equipamento de Proteção Individual , Estados Unidos
2.
Am J Infect Control ; 49(9): 1194-1196, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33774099

RESUMO

Shortages of surgical N95 respirators (surgical N95 FFRs) can occur during a pandemic. To understand if industrial N95 FFRs have FDA required fluid penetration resistance and flammability, five NIOSH approved N95 models were evaluated using the ASTM F1862 method and flammability using the 16 CFR 1610 method, respectively. Three models passed both fluid penetration resistance and flammability indicating that some N95 models on the market can be used as surgical N95 FFRs during a pandemic.


Assuntos
Respiradores N95 , Dispositivos de Proteção Respiratória , Atenção à Saúde , Filtração , Humanos , Pandemias/prevenção & controle , Ventiladores Mecânicos
3.
J Occup Med Toxicol ; 14: 10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949228

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus contamination on surfaces including turnout gear had been found throughout a number of fire stations. As such, the outer shell barrier of turnout gear jackets may be an indirect transmission source and proper disinfection is essential to reduce the risk of exposure to fire fighters. Cleaning practices vary considerably among fire stations, and a method to assess disinfection of gear washed in commercial washer/extractors is needed. METHODS: Swatches (1 in. ×  1.5 in.) of the outer shell fabrics, Gemini™, Advance™, and Pioneer™, of turnout gear were inoculated with S. aureus, and washed with an Environmental Protection Agency-registered sanitizer commonly used to wash turnout gear. To initially assess the sanitizer, inoculated swatches were washed in small tubes according to the American Society for Testing Materials E2274 Protocol for evaluating laundry sanitizers. Inoculated swatches were also pinned to turnout gear jackets and washed in a Milnor commercial washer/extractor. Viable S. aureus that remained attached to fabric swatches after washing were recovered and quantified. Scanning Electron Microscopy was used to characterize the stages of S. aureus biofilm formation on the swatches that can result in resistance to disinfection. RESULTS: Disinfection in small tubes for only 10 s reduced the viability of S. aureus on Gemini™, Advance™, and Pioneer™ by 73, 99, and 100%, respectively. In contrast, disinfection of S. aureus-contaminated Gemini™ swatches pinned to turnout gear and washed in the washer/extractor was 99.7% effective. Scanning Electron Microscopy showed that biofilm formation begins as early as 5 h after attachment of S. aureus. CONCLUSION: This sanitizer and, likely, others containing the anti-microbial agent didecyl dimethyl ammonium chloride, is an effective disinfectant of S. aureus. Inclusion of contaminated outer shell swatches in the wash cycle affords a simple and quantitative method to assess sanitization of gear by commercial gear cleaning facilities. This methodology can be extended to assess for other bacterial contaminants. Sanitizer-resistant strains will continue to pose problems, and biofilm formation may affect the cleanliness of the washed turnout gear. Our methodology for assessing effectiveness of disinfection may help reduce the occupational exposure to fire fighters from bacterial contaminants.

4.
Environ Health Perspect ; 116(9): 1211-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18795165

RESUMO

BACKGROUND: Single-wall carbon nanotubes (SWCNTs), with their unique physicochemical and mechanical properties, have many potential new applications in medicine and industry. There has been great concern subsequent to preliminary investigations of the toxicity, biopersistence, pathogenicity, and ability of SWCNTs to translocate to subpleural areas. These results compel studies of potential interactions of SWCNTs with mesothelial cells. OBJECTIVE: Exposure to asbestos is the primary cause of malignant mesothelioma in 80-90% of individuals who develop the disease. Because the mesothelial cells are the primary target cells of asbestos-induced molecular changes mediated through an oxidant-linked mechanism, we used normal mesothelial and malignant mesothelial cells to investigate alterations in molecular signaling in response to a commercially manufactured SWCNT. METHODS: In the present study, we exposed mesothelial cells to SWCNTs and investigated reactive oxygen species (ROS) generation, cell viability, DNA damage, histone H2AX phosphorylation, activation of poly(ADP-ribose) polymerase 1 (PARP-1), stimulation of extracellular signal-regulated kinase (ERKs), Jun N-terminal kinases (JNKs), protein p38, and activation of activator protein-1 (AP-1), nuclear factor kappaB (NF-kappaB), and protein serine-threonine kinase (Akt). RESULTS: Exposure to SWCNTs induced ROS generation, increased cell death, enhanced DNA damage and H2AX phosphorylation, and activated PARP, AP-1, NF-kappaB, p38, and Akt in a dose-dependent manner. These events recapitulate some of the key molecular events involved in mesothelioma development associated with asbestos exposure. CONCLUSIONS: The cellular and molecular findings reported here do suggest that SWCNTs can cause potentially adverse cellular responses in mesothelial cells through activation of molecular signaling associated with oxidative stress, which is of sufficient significance to warrant in vivo animal exposure studies.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Nanotubos de Carbono , Neoplasias Mesoteliais/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição AP-1/metabolismo , Western Blotting , Ensaio Cometa , Dano ao DNA , Ativação Enzimática , Histonas/metabolismo , Humanos , Neoplasias Mesoteliais/enzimologia , Neoplasias Mesoteliais/patologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
5.
J Toxicol Environ Health A ; 71(22): 1468-81, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18836922

RESUMO

Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were < 20% in low-energy input operation areas (ore crushing, hydroxide product drumming) and > 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to CBD. In comparison to high-CBD risk exposures where the chemical nature of aerosol particles may confer higher bioavailability, respirable ore dusts likely confer considerably less. While finished product beryllium hydroxide particles may confer bioavailability similar to that of high-CBD risk aerosols, physical exposure factors (i.e., large particle sizes) may limit development of alveolar lung burdens.


Assuntos
Berílio/química , Berílio/toxicidade , Indústrias Extrativas e de Processamento , Exposição Ocupacional , Silicatos/química , Aerossóis , Exposição Ocupacional/efeitos adversos , Tamanho da Partícula , Medição de Risco , Fatores de Tempo
6.
J Biol Chem ; 2002 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-11880363

RESUMO

The first author has retracted this paper because of an overlap with Chen, et al, (2002), PNAS 99: 1990-1995, DOI 10.1073/pnas.032428899.

7.
Am J Infect Control ; 43(11): 1190-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26231551

RESUMO

BACKGROUND: Surgical N95 filtering facepiece respirators (FFRs), certified by the National Institute for Occupational Safety and Health (NIOSH) as a respirator and cleared by the Food and Drug Administration (FDA) as a surgical mask, are often used to protect from the inhalation of infectious aerosols and from splashes/sprays of body fluids in health care facilities. A shortage of respirators can be expected during a pandemic. The availability of surgical N95 FFRs can potentially be increased by incorporating FDA clearance requirements in the NIOSH respirator approval process. METHODS: Fluid resistance of NIOSH-approved N95 FFRs, and FDA-cleared surgical N95 FFRs and surgical masks was tested using the ASTM F1862 method at 450 and 635 cm/sec velocities and compared with the results from a third-party independent laboratory. Blood penetration through different layers of filter media of masks were also analyzed visually. RESULTS: Four N95 FFR models showed no test failures at both velocities. The penetration results obtained in the NIOSH laboratory were comparable to those from the third-party independent laboratory. The number of respirator samples failing the test increased with increasing test velocity. CONCLUSIONS: The results indicate that several NIOSH-approved N95 FFR models would likely pass FDA clearance requirements for resistance to synthetic blood penetration.


Assuntos
Máscaras , Exposição Ocupacional/prevenção & controle , Dispositivos de Proteção Respiratória , Aerossóis , Filtração , Humanos , National Institute for Occupational Safety and Health, U.S. , Estados Unidos
8.
Int J Hyg Environ Health ; 213(2): 107-15, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20096630

RESUMO

The dissolution of metal-containing particles in the gastric compartment is poorly understood. The purpose of this study was to elucidate the influence of artificial gastric juice chemical composition on bioaccessibility of metals associated with ingestion-based health concerns. Dissolution rates were evaluated for well-characterized feedstock cobalt, tungsten metal, and tungsten carbide powders, chemically bonded pre-sintered (spray dryer material) and post-sintered (chamfer grinder) cemented tungsten carbide materials, and an admixture of pure cobalt and pure tungsten carbide, prepared by mechanically blending the two feedstock powders. Dissolution of each study material was evaluated in three different formulations of artificial gastric juice (from simplest to most chemically complex): American Society of Testing Materials (ASTM), U.S. Pharmacopoeia (USP), and National Institute for Occupational Safety and Health (NIOSH). Approximately 20% of cobalt dissolved in the first dissolution phase (t(1/2) = 0.02 days) and the remaining 80% was released in the second long-term dissolution phase (t(1/2) = 0.5 to 1 days). Artificial gastric juice chemical composition did not influence dissolution rate constant values (k, g/cm(2)day) of cobalt powder, either alone or as an admixture. Approximately 100% of the tungsten and tungsten carbide that dissolved was released in a single dissolution phase; k-values of each material differed significantly in the solvents: NIOSH > ASTM > USP (p<0.05). The k-values of cobalt and tungsten carbide in pre- and post-sintered cemented tungsten carbide powders were significantly different from values for the pure feedstock powders. Solvent composition had little influence on oral bioaccessibility of highly soluble cobalt and our data support consideration of the oral exposure route as a contributing pathway to total-body exposure. Solvent composition appeared to influence bioaccessibility of the low soluble tungsten compounds, though differences may be due to variability in the data associated with the small masses of materials that dissolved. Nonetheless, ingestion exposure may not contribute appreciably to total body burden given the short residence time of material in the stomach and relatively long dissolution half-times of these materials (t(1/2) = 60 to 380 days).


Assuntos
Cobalto/farmacocinética , Suco Gástrico/química , Tungstênio/farmacocinética , Disponibilidade Biológica , Cobalto/química , Humanos , Tamanho da Partícula , Solubilidade , Tungstênio/química
9.
J Nutr ; 136(6): 1517-21, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16702314

RESUMO

Inflammation and oxidative stress are associated with cancer, atherosclerosis, and other chronic diseases. Dietary flavonoids have been reported to possess antiinflammatory and antioxidant properties, but their mechanisms of action and structure-activity relations have not been fully investigated. We hypothesized that differences in antioxidant activity between the structurally similar flavones, luteolin and chrysin (differing only in B-ring hydroxylation patterns), would differentially affect inflammation-associated Cox-2 expression and PGE2 formation. Pretreatment of RAW 264.7 macrophage-like cells with 25, 50, or 100 micromol/L concentrations of luteolin inhibited lipopolysaccharide (LPS)-induced Cox-2 protein expression (P < 0.0001). Chrysin pretreatment did not reduce LPS-induced Cox-2 protein expression at any level tested. Conversely, both luteolin and chrysin completely suppressed LPS-induced PGE2 formation (P < 0.001). Luteolin, but not chrysin, inhibited xanthine/xanthine oxidase-generated superoxide formation at 100 micromol/L in a cell-free system (P < 0.001). Although both luteolin and chrysin reduced LPS-induced hydroxyl radical formation relative to the positive control (P < 0.001), luteolin was superior to chrysin (P = 0.003). In summary, luteolin and chrysin suppressed PGE2 formation equally well, despite differential effects on Cox-2 protein expression and on superoxide and hydroxyl radical scavenging. These data indicate that flavones may display similar antiinflammatory activity via different mechanisms.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/biossíntese , Flavonoides/farmacologia , Luteolina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 2/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa