Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396763

RESUMO

Epidemiological evidence emphasizes that excess fat mass is associated with an increased risk of severe COVID-19 disease. Nevertheless, the intricate interplay between SARS-CoV-2 and adipocytes remains poorly understood. It is crucial to decipher the progression of COVID-19 both in the acute phase and on long-term outcomes. In this study, an in vitro model using the human SGBS cell line (Simpson-Golabi-Behmel syndrome) was developed to investigate the infectivity of SARS-CoV-2 in adipocytes, and the effects of virus exposure on adipocyte function. Our results show that SGBS adipocytes expressing ACE2 are susceptible to SARS-CoV-2 infection, as evidenced by the release of the viral genome into the medium, detection of the nucleocapsid in cell lysates, and positive immunostaining for the spike protein. Infected adipocytes show remarkable changes compared to uninfected controls: increased surface area of lipid droplets, upregulated expression of genes of inflammation (Haptoglobin, MCP-1, IL-6, PAI-1), increased oxidative stress (MnSOD), and a concomitant reduction of transcripts related to adipocyte function (leptin, fatty acid synthase, perilipin). Moreover, exogenous expression of spike protein in SGBS adipocytes also led to an increase in lipid droplet size. In conclusion using the human SGBS cell line, we detected SARS-CoV-2 infectivity in adipocytes, revealing substantial morphological and functional changes in infected cells.


Assuntos
Arritmias Cardíacas , COVID-19 , Doenças Genéticas Ligadas ao Cromossomo X , Gigantismo , Cardiopatias Congênitas , Deficiência Intelectual , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Cultivadas , COVID-19/metabolismo , SARS-CoV-2 , Adipócitos/metabolismo , Fenótipo , Expressão Gênica
2.
Brain Behav Immun ; 98: 234-244, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34418501

RESUMO

A deterioration in cognitive performance accompanies brain aging, even in the absence of neurodegenerative pathologies. However, the rate of cognitive decline can be slowed down by enhanced cognitive and sensorimotor stimulation protocols, such as environmental enrichment (EE). Understanding how EE exerts its beneficial effects on the aged brain pathophysiology can help in identifying new therapeutic targets. In this regard, the inflammatory chemokine ccl11/eotaxin-1 is a marker of aging with a strong relevance for neurodegenerative processes. Here, we demonstrate that EE in both elderly humans and aged mice decreases circulating levels of ccl11. Interfering, in mice, with the ccl11 decrease induced by EE ablated the beneficial effects on long-term memory retention, hippocampal neurogenesis, activation of local microglia and of ribosomal protein S6. On the other hand, treatment of standard-reared aged mice with an anti-ccl11 antibody resulted in EE-like improvements in spatial memory, hippocampal neurogenesis, and microglial activation. Taken together, our findings point to a decrease in circulating ccl11 concentration as a key mediator of the enhanced hippocampal function resulting from exposure to EE.


Assuntos
Meio Ambiente , Hipocampo , Animais , Quimiocina CCL11 , Camundongos , Neurogênese , Memória Espacial
3.
Proc Natl Acad Sci U S A ; 107(38): 16673-8, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20823242

RESUMO

Western lifestyle contributes to body weight dysregulation. Leptin down-regulates food intake by modulating the activity of neural circuits in the hypothalamic arcuate nucleus (ARC), and resistance to this hormone constitutes a permissive condition for obesity. Physical exercise modulates leptin sensitivity in diet-induced obese rats. The role of other lifestyle components in modulating leptin sensitivity remains elusive. Environmentally enriched mice were used to explore the effects of lifestyle change on leptin production/action and other metabolic parameters. We analyzed adult mice exposed to environmental enrichment (EE), which showed decreased leptin, reduced adipose mass, and increased food intake. We also analyzed 50-d-old mice exposed to either EE (YEE) or physical exercise (YW) since birth, both of which showed decreased leptin. YEE mice showed no change in food intake, increased response to leptin administration, increased activation of STAT3 in the ARC. The YW leptin-induced food intake response was intermediate between young mice kept in standard conditions and YEE. YEE exhibited increased and decreased ratios of excitatory/inhibitory synapses onto α-melanocyte-stimulating hormone and agouti-related peptide neurons of the ARC, respectively. We also analyzed animals as described for YEE and then placed in standard cages for 1 mo. They showed no altered leptin production/action but demonstrated changes in excitatory/inhibitory synaptic contacts in the ARC similar to YEE. EE and physical activity resulted in improved insulin sensitivity. In conclusion, EE and physical activity had an impact on feeding behavior, leptin production/action, and insulin sensitivity, and EE affected ARC circuitry. The leptin-hypothalamic axis is maximally enhanced if environmental stimulation is applied during development.


Assuntos
Comportamento Alimentar/fisiologia , Leptina/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Ingestão de Alimentos/fisiologia , Meio Ambiente , Expressão Gênica , Humanos , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Atividade Motora/fisiologia , Obesidade/etiologia , Obesidade/fisiopatologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais
4.
Front Endocrinol (Lausanne) ; 13: 866679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733784

RESUMO

Lipodystrophy (LD) indicates a group of rare disorders, with generalized or partial loss of white adipose tissue (WAT) often associated with metabolic derangements. Heterogeneity/wide spectrum of the disease and lack of biomarkers make diagnosis often difficult. MicroRNAs are important to maintain a correct WAT function and WAT is a source of circulating miRNAs (cmiRs). miRNAs from 320 family were previously detected in the WAT and variably associated to the metabolic syndrome. Our aim was then to investigate if LD can result in altered abundance of cmiRs-320. We collected samples from a cohort of LD subjects of various subtypes and from age matched controls. Use of quantitative PCR determined that cmiRs- 320a-3p, 320b, 320c, 320e are upregulated, while 320d is downregulated in LD. CmiRs-320 power as classifiers was more powerful in the most extreme and defined forms of LD, including the generalized and the Dunnigan subtypes. cmiR-320a-3p showed significant inverse relationships with plasma leptin (P < 0.0001), typically low in LD. The hepatic enzymes gamma-glutamyl transferase (GGT), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and the marker of inflammation C-reactive protein (CRP) were inversely related to cmiR 320d (P < 0.05, for CRP and GGT; P < 0.01, for AST and ALT). Gene ontology analysis revealed cell-cell adhesion as a process regulated by 320 miRNAs targets, thus disclosing a novel route to investigate origin of WAT loss/dysfunction. In conclusion, cmiRs-320 constitute novel biomarkers of LD, abundance of miR320a-3p is inversely associated to indicators related to WAT function, while downregulation of cmiR-320d predicts an altered hepatic profile and higher inflammation.


Assuntos
MicroRNA Circulante , Lipodistrofia , MicroRNAs , Biomarcadores , Proteína C-Reativa , Humanos , Inflamação/metabolismo , MicroRNAs/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-32117065

RESUMO

Berardinelli-Seip congenital lipoatrophy (BSCL) is characterized by near total fat atrophy, associated with the progressive development of metabolic complications. BSCL type 1 (BSCL1) is caused by mutations in AGPAT2, encoding 1-acylglycerol-3phosphate-O-acyltransferase ß (recently renamed lysophosphatidic acid acyltransferase beta), which catalyzes the transformation of lysophosphatidic acid in phosphatidic acid, the precursor of glycerophospholipids and triglycerides. BSCL1 is an autosomal recessive disease due to AGPAT2 pathogenic variants leading to a depletion of triglycerides inside the adipose organ, and to a defective signaling of key elements involved in proper adipogenesis. We herein investigated the characteristics of two AGPAT2 variants in Caucasian Italian patients with Berardinelli-Seip congenital lipoatrophy. The first patient exhibited a novel homozygous nonsense c.430 C > T AGPAT2 mutation (p.Gln144*) predicting the synthesis of a truncated enzyme of approximately half of the proper size. The second patient harbored a homozygous AGPAT2 missense variant (p.Arg159Cys), never described previously in BSCL1 patients: the segregation of the disease with the mutation in the pedigree of the family and the in silico analysis are compatible with a causative role of the p.Arg159Cys variant. We remark that BSCL1 can be clinically very heterogeneous at presentation and that the associated complications, occurring in the natural history of the disease, reduce life-expectancy. We point to the necessity for medical treatments capable of reducing the risk of cardiovascular death. In BSCL1 patients, the assessment of cardiovascular disease with conventional diagnostic means maybe particularly challenging.


Assuntos
Aciltransferases/genética , Lipodistrofia Generalizada Congênita/diagnóstico , Lipodistrofia Generalizada Congênita/genética , Criança , Códon sem Sentido , Feminino , Heterogeneidade Genética , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem
6.
Sci Rep ; 8(1): 1781, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379096

RESUMO

Leptin and Brain Derived Neurotrophic Factor (BDNF) pathways are critical players in body weight homeostasis. Noninvasive treatments like environmental stimulation are able to increase response to leptin and induce BDNF expression in the brain. Emerging evidences point to the antidepressant selective serotonin reuptake inhibitor Fluoxetine (FLX) as a drug with effects similar to environmental stimulation. FLX is known to impact on body weight, with mechanisms yet to be elucidated. We herein asked whether FLX affects energy balance, the leptin system and BDNF function. Adult lean male mice chronically treated with FLX showed reduced weight gain, higher energy expenditure, increased sensitivity to acute leptin, increased hypothalamic BDNF expression, associated to changes in white adipose tissue expression typical of "brownization". In the Ntrk2tm1Ddg/J model, carrying a mutation in the BDNF receptor Tyrosine kinase B (TrkB), these effects are partially or totally reversed. Wild type obese mice treated with FLX showed reduced weight gain, increased energy output, and differently from untreated obese mice, a preserved acute response to leptin in terms of activation of the intracellular leptin transducer STAT3. In conclusion, FLX impacts on energy balance and induces leptin sensitivity and an intact TrkB function is required for these effects to take place.


Assuntos
Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Fluoxetina/farmacologia , Leptina/farmacologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptor trkB/metabolismo , Aumento de Peso/efeitos dos fármacos
7.
Mol Neurobiol ; 55(12): 9267-9279, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29663284

RESUMO

Hypothalamic proopiomelanocortin (POMC) neurons are important players in the regulation of energy homeostasis; we previously demonstrated that environmental stimulation excites arcuate nucleus circuits to undergo plastic remodeling, leading to altered ratio between excitatory and inhibitory synaptic contacts on these neurons. The widely used selective serotonin reuptake inhibitor fluoxetine (FLX) is known to affect body weight. On the other hand, FLX administration mimics the effects of environmental stimulation on synaptic plasticity in the hippocampus and cortex. The mammalian target of rapamycin (mTOR) pathway is instrumental in these phenomena. Thus, we aimed at investigating whether and how FLX affects POMC neurons activity and hypothalamic mTOR function. Adult mice expressing green fluorescent protein (GFP) under the POMC promoter were treated with FLX for 3 weeks resulting in diminished body weight. Patch clamp recordings performed on POMC neurons indicate that FLX increases their firing rate and the excitatory AMPA-mediated transmission, and reduces the inhibitory GABAergic currents at presynaptic level. Immunofluorescence studies indicate that FLX increases the ratio between excitatory and inhibitory synaptic contacts on POMC neurons. These changes are associated with an increased activity of the hypothalamic mTOR pathway. Use of the mTOR inhibitor rapamycin blunts the effects of FLX on body weight and on functional and structural plasticity of POMC neurons. Our findings indicate that FLX is able to remodel POMC neurons, and that this may be partly mediated by the mTOR signaling pathway.


Assuntos
Fluoxetina/farmacologia , Hipotálamo/citologia , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais , Potenciais de Ação/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Leptina/farmacologia , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Sirolimo/farmacologia
8.
Endocr Rev ; 37(4): 403-16, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27337111

RESUMO

Obesity is a low chronic inflammatory state because several inflammatory factors are increased in obese subjects, this having important implications for the onset of obesity-associated complications. The source of most of these inflammatory molecules is white adipose tissue (WAT), which upon excessive weight gain, becomes infiltrated with macrophages and lymphocytes and undergoes important changes in its gene expression. Haptoglobin (Hp), a typical marker of inflammation in clinical practice, main carrier of free hemoglobin, and long known to be part of the hepatic acute phase response, perfectly sits in the intersection between obesity and inflammation: it is expressed by adipocytes and its abundance in WAT and in plasma positively relates to the degree of adiposity. In the present review, we will analyze causes and consequences of Hp expression and regulation in WAT and how these relate to the obesity/inflammation paradigm and comorbidities.


Assuntos
Tecido Adiposo Branco/metabolismo , Haptoglobinas/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Humanos , Inflamação/sangue , Obesidade/sangue
9.
PLoS One ; 9(6): e100745, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24959824

RESUMO

BACKGROUND: Oxidative stress (OS) plays a major role on tissue function. Several catabolic or stress conditions exacerbate OS, inducing organ deterioration. Haptoglobin (Hp) is a circulating acute phase protein, produced by liver and adipose tissue, and has an important anti-oxidant function. Hp is induced in pro-oxidative conditions such as systemic inflammation or obesity. The role of systemic factors that modulate oxidative stress inside muscle cells is still poorly investigated. RESULTS: We used Hp knockout mice (Hp-/-) to determine the role of this protein and therefore, of systemic OS in maintenance of muscle mass and function. Absence of Hp caused muscle atrophy and weakness due to activation of an atrophy program. When animals were stressed by acute exercise or by high fat diet (HFD), OS, muscle atrophy and force drop were exacerbated in Hp-/-. Depending from the stress condition, autophagy-lysosome and ubiquitin-proteasome systems were differently induced. CONCLUSIONS: Hp is required to prevent OS and the activation of pathways leading to muscle atrophy and weakness in normal condition and upon metabolic challenges.


Assuntos
Haptoglobinas/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Estresse Oxidativo , Animais , Autofagia , Dieta Hiperlipídica , Expressão Gênica , Haptoglobinas/genética , Lisossomos , Masculino , Camundongos Knockout , Mitocôndrias/metabolismo , Atrofia Muscular/patologia , Obesidade/metabolismo , Oxirredução , Condicionamento Físico Animal , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo
10.
Adipocyte ; 1(3): 142-183, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23700523

RESUMO

Haptoglobin (Hp) is an inflammatory and adiposity marker, its expression during obesity being specifically induced in the white adipose tissue (WAT). We previously reported that when challenged with a high fat diet (HFD) Hp-/- mice are partially protected from the onset of insulin resistance and hepatosteatosis. The aim of the present study was to get further insights into Hp function in WAT. To this end, we performed histological and gene expression analysis of the Hp-/- WAT, both in standard and obesity conditions, and investigated how Hp deficiency impacts adipogenesis and WAT development. The average size and percentage of very large adipocytes were respectively smaller and reduced in HFD Hp-/- mice as compared with HFD WT. The expression of perilipin, HSL and angiogenesis related markers were increased in HFD Hp-/- mice. Lean adult Hp-/- showed significantly larger adipocytes and lower subcutaneous WAT expression of aP2 and LPL with respect to WT. Hp-/- young mice (P30) were characterized by larger adipocyte size and lower expression of adipocyte and adipogenesis markers. Comparison of adipocyte size distribution between young and adult mice revealed attenuated changes in Hp-/- mice compared with WT. Mouse embryonic fibroblasts from Hp-/- mice were less capable of accumulating triglycerides and exhibited lower expression of PPARγ, aP2, FAS, LPL and Leptin. In conclusion, Hp deficiency tends to blunt the effect of age and diet on the size of adipocytes, which show less susceptibility to develop hypertrophy during obesity and a reduced adipogenic/hyperplastic potential during youth. In addition, Hp deficiency impacts negatively on adipogenesis.

11.
J Clin Invest ; 122(1): 383-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22156194

RESUMO

Immune tolerance to transplanted organs is impaired when the innate immune system is activated in response to the tissue necrosis that occurs during harvesting and implantation procedures. A key molecule in this immune pathway is the intracellular TLR signal adaptor known as myeloid differentiation primary response gene 88 (MyD88). After transplantation, MyD88 induces DC maturation as well as the production of inflammatory mediators, such as IL-6 and TNF-α. However, upstream activators of MyD88 function in response to transplantation have not been identified. Here, we show that haptoglobin, an acute phase protein, is an initiator of this MyD88-dependent inflammatory process in a mouse model of skin transplantation. Necrotic lysates from transplanted skin elicited higher inflammatory responses in DCs than did nontransplanted lysates, suggesting DC-mediated responses are triggered by factors released during transplantation. Analysis of transplanted lysates identified haptoglobin as one of the proteins upregulated during transplantation. Expression of donor haptoglobin enhanced the onset of acute skin transplant rejection, whereas haptoglobin-deficient skin grafts showed delayed acute rejection and antidonor T cell priming in a MyD88-dependent graft rejection model. Thus, our results show that haptoglobin release following skin necrosis contributes to accelerated transplant rejection, with potential implications for the development of localized immunosuppressive therapies.


Assuntos
Rejeição de Enxerto/etiologia , Haptoglobinas/metabolismo , Imunidade Inata/fisiologia , Doença Aguda , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Haptoglobinas/deficiência , Haptoglobinas/genética , Interleucina-6/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Necrose , Pele/imunologia , Pele/metabolismo , Pele/patologia , Transplante de Pele/imunologia , Transplante de Pele/patologia , Transplante de Pele/fisiologia , Linfócitos T/imunologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
12.
Diabetes ; 60(10): 2496-505, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21873550

RESUMO

OBJECTIVE: Haptoglobin (Hp) is upregulated in both inflammation and obesity. The low chronic inflammatory state, caused by massive adipose tissue macrophage (ATM) infiltration found in obesity, and low adiponectin have been implicated in the development of insulin resistance and hepatosteatosis. The aim of this work was to investigate whether and how Hp interferes with the onset of obesity-associated complications. RESEARCH DESIGN AND METHODS: Hp-null (Hp(-/-)) and wild-type (WT) mice were metabolically profiled under chow-food diet (CFD) and high-fat diet (HFD) feeding by assessing physical parameters, glucose tolerance, insulin sensitivity, insulin response to glucose load, liver triglyceride content, plasma levels of leptin, insulin, glucose, and adiponectin. ATM content was evaluated by using immunohistochemistry (anti-F4/80 antibody). Adiponectin expression was measured in Hp-treated, cultured 3T3-L1 and human adipocytes. RESULTS: No genotype-related difference was found in CFD animals. HFD-Hp(-/-) mice revealed significantly higher glucose tolerance, insulin sensitivity, glucose-stimulated insulin secretion, and adiponectin expression and reduced hepatomegaly/steatosis compared with HFD-WT mice. White adipose tissue (WAT) of HFD-Hp(-/-) mice showed higher activation of insulin signaling cascade, lower ATM, and higher adiponectin expression. Hp was able to inhibit adiponectin expression in cultured adipocytes. CONCLUSIONS: We demonstrated that in the absence of Hp, obesity-associated insulin resistance and hepatosteatosis are attenuated, which is associated with reduced ATM content, increased plasma adiponectin, and higher WAT insulin sensitivity.


Assuntos
Glicemia/metabolismo , Fígado Gorduroso/etiologia , Haptoglobinas/deficiência , Haptoglobinas/metabolismo , Obesidade/complicações , Animais , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Teste de Tolerância a Glucose , Haptoglobinas/genética , Homeostase/fisiologia , Resistência à Insulina , Fígado/metabolismo , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa