Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 38(18): e101426, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31373033

RESUMO

Steroid hormones are key gene regulators in breast cancer cells. While estrogens stimulate cell proliferation, progestins activate a single cell cycle followed by proliferation arrest. Here, we use biochemical and genome-wide approaches to show that progestins achieve this effect via a functional crosstalk with C/EBPα. Using ChIP-seq, we identify around 1,000 sites where C/EBPα binding precedes and helps binding of progesterone receptor (PR) in response to hormone. These regions exhibit epigenetic marks of active enhancers, and C/EBPα maintains an open chromatin conformation that facilitates loading of ligand-activated PR. Prior to hormone exposure, C/EBPα favors promoter-enhancer contacts that assure hormonal regulation of key genes involved in cell proliferation by facilitating binding of RAD21, YY1, and the Mediator complex. Knockdown of C/EBPα disrupts enhancer-promoter contacts and decreases the presence of these architectural proteins, highlighting its key role in 3D chromatin looping. Thus, C/EBPα fulfills a previously unknown function as a potential growth modulator in hormone-dependent breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Receptores de Progesterona/metabolismo , Animais , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Camundongos , Transplante de Neoplasias , Progestinas/farmacologia , Regiões Promotoras Genéticas , Ensaios Antitumorais Modelo de Xenoenxerto , Fator de Transcrição YY1/metabolismo
2.
J Pathol ; 247(3): 287-292, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30430577

RESUMO

Estrogen receptor α-positive (ER-positive) or 'luminal' breast cancers were notoriously difficult to establish as patient-derived xenografts (PDXs). We and others recently demonstrated that the microenvironment is critical for ER-positive tumor cells; when grafted as single cells into milk ducts of NOD Scid gamma females, >90% of ER-positive tumors can be established as xenografts and recapitulate many features of the human disease in vivo. This intraductal approach holds promise for personalized medicine, yet human and murine stroma are organized differently and this and other species specificities may limit the value of this model. Here, we analyzed 21 ER-positive intraductal PDXs histopathologically. We found that intraductal PDXs vary in extent and define four histopathological patterns: flat, lobular, in situ and invasive, which occur in pure and combined forms. The intraductal PDXs replicate earlier stages of tumor development than their clinical counterparts. Micrometastases are already detected when lesions appear in situ. Tumor extent, histopathological patterns and micrometastatic load correlate with biological properties of their tumors of origin. Our findings add evidence to the validity of the intraductal model for in vivo studies of ER-positive breast cancer and raise the intriguing possibility that tumor cell dissemination may occur earlier than currently thought. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Intraductal não Infiltrante/patologia , Receptor alfa de Estrogênio/metabolismo , Neoplasias Mamárias Experimentais/patologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/secundário , Feminino , Xenoenxertos , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Camundongos SCID , Micrometástase de Neoplasia/patologia , Transplante de Neoplasias
3.
Cancer Metastasis Rev ; 35(4): 547-573, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28025748

RESUMO

Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.


Assuntos
Neoplasias da Mama/patologia , Modelos Animais de Doenças , Animais , Feminino , Xenoenxertos , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Pesquisa Translacional Biomédica
4.
Nat Commun ; 13(1): 3127, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668111

RESUMO

Estrogen and progesterone receptor (ER, PR) signaling control breast development and impinge on breast carcinogenesis. ER is an established driver of ER + disease but the role of the PR, itself an ER target gene, is debated. We assess the issue in clinically relevant settings by a genetic approach and inject ER + breast cancer cell lines and patient-derived tumor cells to the milk ducts of immunocompromised mice. Such ER + xenografts were exposed to physiologically relevant levels of 17-ß-estradiol (E2) and progesterone (P4). We find that independently both premenopausal E2 and P4 levels increase tumor growth and combined treatment enhances metastatic spread. The proliferative responses are patient-specific with MYC and androgen receptor (AR) signatures determining P4 response. PR is required for tumor growth in patient samples and sufficient to drive tumor growth and metastasis in ER signaling ablated tumor cells. Our findings suggest that endocrine therapy may need to be personalized, and that abrogating PR expression can be a therapeutic option.


Assuntos
Neoplasias da Mama , Receptores de Progesterona , Animais , Neoplasias da Mama/metabolismo , Estradiol/farmacologia , Estradiol/uso terapêutico , Feminino , Humanos , Camundongos , Progesterona/farmacologia , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
5.
EMBO Mol Med ; 13(7): e14314, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34042278

RESUMO

Hormonal contraception exposes women to synthetic progesterone receptor (PR) agonists, progestins, and transiently increases breast cancer risk. How progesterone and progestins affect the breast epithelium is poorly understood because we lack adequate models to study this. We hypothesized that individual progestins differentially affect breast epithelial cell proliferation and hence breast cancer risk. Using mouse mammary tissue ex vivo, we show that testosterone-related progestins induce the PR target and mediator of PR signaling-induced cell proliferation receptor activator of NF-κB ligand (Rankl), whereas progestins with anti-androgenic properties in reporter assays do not. We develop intraductal xenografts of human breast epithelial cells from 36 women, show they remain hormone-responsive and that progesterone and the androgenic progestins, desogestrel, gestodene, and levonorgestrel, promote proliferation but the anti-androgenic, chlormadinone, and cyproterone acetate, do not. Prolonged exposure to androgenic progestins elicits hyperproliferation with cytologic changes. Androgen receptor inhibition interferes with PR agonist- and levonorgestrel-induced RANKL expression and reduces levonorgestrel-driven cell proliferation. Thus, different progestins have distinct biological activities in the breast epithelium to be considered for more informed choices in hormonal contraception.


Assuntos
Androgênios , Progestinas , Animais , Proliferação de Células , Anticoncepcionais , Camundongos
6.
EMBO Mol Med ; 13(3): e13180, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33616307

RESUMO

Invasive lobular carcinoma (ILC) is the most frequent special histological subtype of breast cancer, typically characterized by loss of E-cadherin. It has clinical features distinct from other estrogen receptor-positive (ER+ ) breast cancers but the molecular mechanisms underlying its characteristic biology are poorly understood because we lack experimental models to study them. Here, we recapitulate the human disease, including its metastatic pattern, by grafting ILC-derived breast cancer cell lines, SUM-44 PE and MDA-MB-134-VI cells, into the mouse milk ducts. Using patient-derived intraductal xenografts from lobular and non-lobular ER+ HER2- tumors to compare global gene expression, we identify extracellular matrix modulation as a lobular carcinoma cell-intrinsic trait. Analysis of TCGA patient datasets shows matrisome signature is enriched in lobular carcinomas with overexpression of elastin, collagens, and the collagen modifying enzyme LOXL1. Treatment with the pan LOX inhibitor BAPN and silencing of LOXL1 expression decrease tumor growth, invasion, and metastasis by disrupting ECM structure resulting in decreased ER signaling. We conclude that LOXL1 inhibition is a promising therapeutic strategy for ILC.


Assuntos
Neoplasias da Mama , Carcinoma Lobular , Aminoácido Oxirredutases/genética , Animais , Carcinoma Lobular/genética , Matriz Extracelular , Feminino , Xenoenxertos , Humanos , Camundongos , Receptores de Estrogênio
7.
J Mol Endocrinol ; 65(1): T81-T94, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32508307

RESUMO

Progesterone is considered as the pregnancy hormone and acts on many different target tissues. Progesterone receptor (PR) signaling is important for normal development and the physiologic function of the breast and impinges on breast carcinogenesis. Both systemically and locally, in the breast epithelium, there are multiple layers of complexity to progesterone action, many of which have been revealed through experiments in mice. The hormone acts via its receptor expressed in a subset of cells, the sensor cells, in the breast epithelium with different signaling outcomes in individual cells eliciting distinct cell-intrinsic and paracrine signaling involving different mediators for different intercellular interactions. PR expression itself is developmentally regulated and the biological outcome of PR signaling depends on the developmental stage of the mammary gland and the endocrine context. During both puberty and adulthood PR activates stem and progenitor cells through Wnt4-driven activation of the myoepithelium with downstream Adamts18-induced changes in extracellualr matrix (ECM) / basal membrane (BM). During estrous cycling and pregnancy, the hormone drives a major cell expansion through Rankl. At all stages, PR signaling is closely tied to estrogen receptor α (ER) signaling. As the PR itself is a target gene of ER, the complex interactions are experimentally difficult to dissect and still poorly understood. Ex vivo models of the human breast and studies on biopsy samples show that major signaling axes are conserved across species. New intraductal xenograft models hold promise to provide a better understanding of PR signaling in the normal breast epithelium and in breast cancer development in the near future.


Assuntos
Neoplasias da Mama/metabolismo , Mama/metabolismo , Mama/patologia , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Transdução de Sinais , Animais , Modelos Animais de Doenças , Feminino , Humanos
8.
Cancer Cell ; 38(3): 412-423.e9, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32679107

RESUMO

The cytokine interleukin-6 (IL6) and its downstream effector STAT3 constitute a key oncogenic pathway, which has been thought to be functionally connected to estrogen receptor α (ER) in breast cancer. We demonstrate that IL6/STAT3 signaling drives metastasis in ER+ breast cancer independent of ER. STAT3 hijacks a subset of ER enhancers to drive a distinct transcriptional program. Although these enhancers are shared by both STAT3 and ER, IL6/STAT3 activity is refractory to standard ER-targeted therapies. Instead, inhibition of STAT3 activity using the JAK inhibitor ruxolitinib decreases breast cancer invasion in vivo. Therefore, IL6/STAT3 and ER oncogenic pathways are functionally decoupled, highlighting the potential of IL6/STAT3-targeted therapies in ER+ breast cancer.


Assuntos
Neoplasias da Mama/genética , Elementos Facilitadores Genéticos/genética , Receptor alfa de Estrogênio/genética , Interleucina-6/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Animais , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Fulvestranto/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-6/metabolismo , Estimativa de Kaplan-Meier , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Metástase Neoplásica , Fator de Transcrição STAT3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Nat Commun ; 9(1): 4723, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413705

RESUMO

Oestrogen receptor α (ERα) is a transcription factor with ligand-independent and ligand-dependent activation functions (AF)-1 and -2. Oestrogens control postnatal mammary gland development acting on a subset of mammary epithelial cells (MECs), termed sensor cells, which are ERα-positive by immunohistochemistry (IHC) and secrete paracrine factors, which stimulate ERα-negative responder cells. Here we show that deletion of AF-1 or AF-2 blocks pubertal ductal growth and subsequent development because both are required for expression of essential paracrine mediators. Thirty percent of the luminal cells are ERα-negative by IHC but express Esr1 transcripts. This low level ERα expression through AF-2 is essential for cell expansion during puberty and growth-inhibitory during pregnancy. Cell-intrinsic ERα is not required for cell proliferation nor for secretory differentiation but controls transcript levels of cell motility and cell adhesion genes and a stem cell and epithelial mesenchymal transition (EMT) signature identifying ERα as a key regulator of mammary epithelial cell plasticity.


Assuntos
Epitélio/metabolismo , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Glândulas Mamárias Animais/metabolismo , Animais , Proliferação de Células , Sistema Endócrino/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Regulação da Expressão Gênica , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Fenótipo , Gravidez , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esteroides/metabolismo , Relação Estrutura-Atividade
10.
Cancer Cell ; 29(3): 407-422, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26947176

RESUMO

Seventy-five percent of breast cancers are estrogen receptor α positive (ER⁺). Research on these tumors is hampered by lack of adequate in vivo models; cell line xenografts require non-physiological hormone supplements, and patient-derived xenografts (PDXs) are hard to establish. We show that the traditional grafting of ER⁺ tumor cells into mammary fat pads induces TGFß/SLUG signaling and basal differentiation when they require low SLUG levels to grow in vivo. Grafting into the milk ducts suppresses SLUG; ER⁺ tumor cells develop, like their clinical counterparts, in the presence of physiological hormone levels. Intraductal ER⁺ PDXs are retransplantable, predictive, and appear genomically stable. The model provides opportunities for translational research and the study of physiologically relevant hormone action in breast carcinogenesis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Glândulas Mamárias Humanas/patologia , Microambiente Tumoral/genética , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa