Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 71(6): 645-651, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32725897

RESUMO

Following the appearance of several antimicrobial agents to control the spread of infections, two major challenges have emerged: (i) the occurrence and blowout of multiresistant bacteria and the increase of chronic diseases and (ii) difficult-to-eradicate infections. In this study, we tested five benzoylthiourea derivatives for their ability to inhibit and stop bacterial growth and evaluated the possible influence of 1,2,4-triazolyl-benzoylthiourea derivative 4 on the formation and eradication of Staphylococcus aureus biofilms. Benzoylthiourea derivatives 4, 6, 10, 11 and 13 were obtained in one or two steps with low cost and subjected to tests to identify their minimum inhibitory concentration (MIC) and minimum bactericidal concentration. In vitro tests were also performed to assess their effects on biofilm formation and in preformed biofilms and scanning electron microscopy was used to visualize the effects on biofilm formation. The 1,2,4-triazolyl-benzoylthiourea derivative 4 showed bacteriostatic activity against the S. aureus HU25 clinical strain with an MIC of 16 µg ml-1 , which is below the toxic concentration (at 2500 µg ml-1 , 62·25% of the cells remained viable). Compound 4 also effectively prevented biofilm formation at the three subinhibitory concentrations tested (1/2 MIC, 1/4 MIC and 1/8 MIC) as confirmed by scanning electron microscopy. For breakdown of formed biofilms, the main influence was at a subinhibitory concentration (1/2 MIC). These findings make compound 4 a strong candidate for studies on the development of new antimicrobial and antibiofilm agents.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tioureia/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Humanos , Testes de Sensibilidade Microbiana , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Plâncton/fisiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/fisiologia , Tioureia/química
2.
Braz J Biol ; 83: e275622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422264

RESUMO

Citrus bergamia is a citric species known as bergamot. The species is widely used due to its derivatives, such as juices, extracts, and essential oil. Specifically, the bergamot essential oil (BEO) is of great interest, with a chemical composition rich in terpenes and esters. Considering its chemical composition, bioactivity, and great economic potential, the characterization of BEO should be studied. However, this essential oil is almost unexplored in terms of a characterization associated with colloids. Chemical characterization was carried out by gas-chromatography coupled to a mass spectrometer and by gas-chromatography coupled to a flame ionization detector. Antibacterial activity against Staphylococcus aureus and Escherichia coli was carried out to confirm the bioactivity of this important essential oil. Dynamic light scattering analysis was performed to create a pattern of droplet size distribution of BEO. Major compounds of BEO were linalyl acetate, limonene, and linalool. The BEO was active against E. coli and presented a MIC value of 2.000 µg/mL, while values of MIC and MBC higher than 2.000 µg/mL were observed for S. aureus. The dynamic light scattering analysis revealed a mean hydrodynamic diameter of 65.7 ± 2.2 nm. After a 1:10 dilution it was observed reduction of mean diameter and enhancement of the percentagem of low size droplets, resepctively 44.1 ± 1.2 nm and 14.5 ± 0.5 nm (28.8 ± 1.2%). Higher droplets and reduced polydispersity index were observed after 1:100 dilution. In the present study, the chemical characterization was in accordance with the species, as the characteristic chemical markers of the species were found. Moreover, it has presented antibacterial activity as expected for the BEO. The analysis of the colloid showed a pattern of droplet size distribution following the Ostwald ripening mechanism after dilution.


Assuntos
Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Escherichia coli , Staphylococcus aureus , Terpenos , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa