Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 953: 175706, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39197760

RESUMO

Rock glaciers (RGs) provide significant water resources in mountain areas under climate change. Recent research has highlighted high concentrations of solutes including trace elements in RG-fed waters, with negative implications on water quality. Yet, sparse studies from a few locations hinder conclusions about the main drivers of solute export from RGs. Here, in an unprecedented effort, we collected published and unpublished data on rock glacier hydrochemistry around the globe. We considered 201 RG springs from mountain ranges across Europe, North and South America, using a combination of machine learning, multivariate and univariate analyses, and geochemical modeling. We found that 35 % of springs issuing from intact RGs (containing internal ice) have water quality below drinking water standards, compared to 5 % of springs connected to relict RGs (without internal ice). The interaction of ice and bedrock lithology is responsible for solute concentrations in RG springs. Indeed, we found higher concentrations of sulfate and trace elements in springs sourcing from intact RGs compared to water originating from relict RGs, mostly in specific lithological settings. Enhanced sulfide oxidation in intact RGs is responsible for the elevated trace element concentrations. Challenges for water management may arise in mountain catchments rich in intact RGs, and where the predisposing geology would make these areas geochemical RG hotspots. Our work represents a first comprehensive attempt to identify the main drivers of solute concentrations in RG waters.

2.
PLoS One ; 16(3): e0248877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33784327

RESUMO

The Swiss Alpine environments are poorly described from a microbiological perspective. Near the Greina plateau in the Camadra valley in Ticino (southern Swiss Alps), a green-turquoise-coloured water spring streams off the mountain cliffs. Geochemical profiling revealed naturally elevated concentrations of heavy metals such as copper, lithium, zinc and cadmium, which are highly unusual for the geomorphology of the region. Of particular interest, was the presence of a thick biofilm, that was revealed by microscopic analysis to be mainly composed of Cyanobacteria. A metagenome was further assembled to detail the genes found in this environment. A multitude of genes for resistance/tolerance to high heavy metal concentrations were indeed found, such as, various transport systems, and genes involved in the synthesis of extracellular polymeric substances (EPS). EPS have been evoked as a central component in photosynthetic environments rich in heavy metals, for their ability to drive the sequestration of toxic, positively-charged metal ions under high regimes of cyanobacteria-driven photosynthesis. The results of this study provide a geochemical and microbiological description of this unusual environment in the southern Swiss Alps, the role of cyanobacterial photosynthesis in metal resistance, and the potential role of such microbial community in bioremediation of metal-contaminated environments.


Assuntos
Ecossistema , Sedimentos Geológicos/química , Metagenômica , Metais/análise , Rios/química , Bactérias/classificação , Bactérias/genética , Biodiversidade , Cor , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Genes Bacterianos , Fixação de Nitrogênio , Filogenia , Suíça , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa