Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 573(7772): 102-107, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31485055

RESUMO

Amides and related carbonyl derivatives are of central importance across the physical and life sciences1,2. As a key biological building block, the stability and conformation of amides affect the structures of peptides and proteins as well as their biological function. In addition, amide-bond formation is one of the most frequently used chemical transformations3,4. Given their ubiquity, a technology that is capable of modifying the fundamental properties of amides without compromising on stability may have considerable potential in pharmaceutical, agrochemical and materials science. In order to influence the physical properties of organic molecules-such as solubility, lipophilicity, conformation, pKa and (metabolic) stability-fluorination approaches have been widely adopted5-7. Similarly, site-specific modification with isosteres and peptidomimetics8, or in particular by N-methylation9, has been used to improve the stability, physical properties, bioactivities and cellular permeabilities of compounds. However, the N-trifluoromethyl carbonyl motif-which combines both N-methylation and fluorination approaches-has not yet been explored, owing to a lack of efficient methodology to synthesize it. Here we report a straightforward method to access N-trifluoromethyl analogues of amides and related carbonyl compounds. The strategy relies on the operationally simple preparation of bench-stable carbamoyl fluoride building blocks, which can be readily diversified to the corresponding N-CF3 amides, carbamates, thiocarbamates and ureas. This method tolerates rich functionality and stereochemistry, and we present numerous examples of highly functionalized compounds-including analogues of widely used drugs, antibiotics, hormones and polymer units.


Assuntos
Amidas/química , Carbamatos/química , Ureia/análogos & derivados , Ureia/química , Fluoretos/química , Isotiocianatos/química , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química
2.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474631

RESUMO

A wide range of platinum(0)-η2-(E)-1,2-ditosylethene complexes bearing isocyanide, phosphine and N-heterocyclic carbene ancillary ligands have been prepared with high yields and selectivity. All the novel products underwent thorough characterization using spectroscopic techniques, including NMR and FT-IR analyses. Additionally, for some compounds, the solid-state structures were elucidated through X-ray diffractometry. The synthesized complexes were successively evaluated for their potential as anticancer agents against two ovarian cancer cell lines (A2780 and A2780cis) and one breast cancer cell line (MDA-MB-231). The majority of the compounds displayed promising cytotoxicity within the micromolar range against A2780 and MDA-MB-231 cells, with IC50 values comparable to or even surpassing those of cisplatin. However, only a subset of compounds was cytotoxic against cisplatin-resistant cancer cells (A2780cis). Furthermore, the assessment of antiproliferative activity on MRC-5 normal cells revealed certain compounds to exhibit in vitro selectivity. Notably, complexes 3d, 6a and 6b showed low cytotoxicity towards normal cells (IC50 > 100 µM) while concurrently displaying potent cytotoxicity against cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Metano/análogos & derivados , Neoplasias Ovarianas , Fosfinas , Feminino , Humanos , Cisplatino/química , Platina/química , Linhagem Celular Tumoral , Cianetos , Espectroscopia de Infravermelho com Transformada de Fourier , Complexos de Coordenação/química , Antineoplásicos/química , Ligantes
3.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257258

RESUMO

A new class of palladium-indenyl complexes characterized by the presence of one bulky alkyl isocyanide and one aryl phosphine serving as ancillary ligands has been prepared, presenting high yields and selectivity. All the new products were completely characterized using spectroscopic and spectrometric techniques (NMR, FT-IR, and HRMS), and, for most of them, it was also possible to define their solid-state structures via X-ray diffractometry, revealing that the indenyl fragment always binds to the metal centre with a hapticity intermediate between ƞ3 and ƞ5. A reactivity study carried out using piperidine as a nucleophilic agent proved that the indenyl moiety is the eligible site of attack rather than the isocyanide ligand or the metal centre. All complexes were tested as potential anticancer agents against three ovarian cancer cell lines (A2780, A2780cis, and OVCAR-5) and one breast cancer cell line (MDA-MB-231), displaying comparable activity with respect to cisplatin, which was used as a positive control. Moreover, the similar cytotoxicity observed towards A2780 and A2780cis cells (cisplatin-sensitive and cisplatin-resistant, respectively) suggests that our palladium derivatives presumably act with a mechanism of action different than that of the clinically approved platinum drugs. For comparison, we also synthesized Pd-ƞ3-allyl derivatives, which generally showed a slightly higher activity towards ovarian cancer cells and lower activity towards breast cancer cells with respect to their Pd-indenyl congeners.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Fosfinas , Humanos , Feminino , Cisplatino , Linhagem Celular Tumoral , Ligantes , Paládio , Espectroscopia de Infravermelho com Transformada de Fourier , Cianetos
4.
Chemistry ; 29(55): e202301912, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37449461

RESUMO

A family of novel thermally activated delayed fluorescence (TADF) emitters has been synthesized by a straightforward and metal-free synthesis, and structurally characterized. In this work we kept the acceptor moiety, 4-(1H-imidazol-1-yl)benzonitrile, fixed and systemically tested different donors to correlate their photophysical and electrochemical properties with their performance in electrochemiluminescence using both benzoyl peroxide as co-reactant and co-reactant free (annihilation) conditions. Some compounds exceeded the efficiency of the standard [Ru(bpy)3 ]Cl2 by up to 28 times with benzoyl peroxide and 38 times in annihilation. Interestingly, we found that the efficiency is mainly dictated by the electrochemical reversibility of the redox processes rather than by the photophysical properties in terms of photoluminescence quantum yields or excited-state lifetime. In addition, the annihilation electrochemiluminescence efficiency strongly depends on the pulse sequence. The imidazole moiety can be conveniently alkylated, thus allowing the insertion of functional groups, such a carboxylic acid, and enabling practical applications.

5.
Chemistry ; 29(58): e202301961, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463071

RESUMO

The prominent role of gold-N-heterocyclic carbene (NHC) complexes in numerous research areas such as homogeneous (photo)catalysis, medicinal chemistry and materials science has prompted organometallic chemists to design gold-based synthons that permit access to target complexes through simple synthetic steps under mild conditions. In this review, the main gold-NHC synthons employed in organometallic synthesis are discussed. Mechanistic aspects involved in their synthesis and reactivity as well as applications of gold-NHC synthons as efficient pre-catalysts, antitumor agents and/or photo-emissive materials are presented.

6.
Angew Chem Int Ed Engl ; 62(34): e202304672, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37204285

RESUMO

Due to its excellent bioactivity profile, which is increasingly utilized in pharmaceutical and synthetic chemistry, spirooxindole is an important core scaffold. We herein describe an efficient method for the construction of highly functionalized new spirooxindolocarbamates via a gold-catalyzed cycloaddition reaction of terminal alkynes or ynamides with isatin-derived ketimines. This protocol has a good functional group compatibility, uses readily available starting materials, mild reaction conditions, low catalyst loadings and no additives. It enables the transformation of various functionalized alkyne groups into cyclic carbamates. Gram-scale synthesis was achieved and DFT calculations verify the feasibility of the mechanistic proposal. Some of the target products exhibit good to excellent antiproliferative activity on human tumor cell lines. In addition, one of the most active compounds displayed a remarkable selectivity towards tumor cells over normal ones.

7.
Chemistry ; 28(47): e202201224, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35652609

RESUMO

A straightforward synthetic protocol leading to carbene-metal-amido (CMA) complexes (metal=Au, Cu) using a mild base and an environmentally desirable solvent (EtOH) has been explored, with a focus on complexes bearing backbone-substituted N-heterocyclic carbene (NHC) ligands, including BIAN-NHCs (BIAN=bis(imino)acenaphthene). The novel CMAs were structurally characterized, and gold-based CMAs bearing diverse NHCs were screened as simple, Brønsted-basic precatalysts. The readily accessible complexes display high catalytic activity in the intermolecular and intramolecular hydrocarboxylation of internal alkynes and alkynoic acids respectively, while the screening reveals the ancillary ligand effect of NHCs in these catalytic systems.


Assuntos
Complexos de Coordenação , Compostos Heterocíclicos , Alcinos , Ácidos Carboxílicos , Catálise , Ouro , Ligantes , Metano/análogos & derivados
8.
Chemistry ; 27(53): 13342-13345, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34323322

RESUMO

The use of weak and inexpensive bases has recently opened promising perspectives towards the simpler and more sustainable synthesis of Au(I)-aryl complexes with valuable applications in catalysis, medicinal chemistry, and materials science. In recent years, continuous manufacturing has shown to be a reliable partner in establishing sustainable and controlled process scalability. Herein, the first continuous flow synthesis of a range of Au(I)-aryl starting from widely available boronic acids and various [Au(NHC)Cl] (NHC=N-heterocyclic carbene) complexes in unprecedentedly short reaction times and high yields is reported. Successful synthesis of previously non- or poorly accessible complexes exposed fascinating reactivity patterns. Via a gram-scale synthesis, convenient process scalability of the developed protocol was showcased.

9.
Chemistry ; 27(18): 5653-5657, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33528078

RESUMO

The use of weak bases and mild conditions is currently the most sustainable and attractive synthetic approach for the preparation of late-transition metal complexes, some of which are widely used in catalysis, medicinal chemistry and materials science. Herein, the use of cuprate, aurate or palladate species for a continuous flow preparation of CuI , AuI and PdII -NHC complexes is reported. All reactions examined proceed under extremely mild conditions and make use of technical grade acetone as solvent. The scalability of the process was exemplified in a multigram-scale synthesis of [Cu(IPr)Cl].

10.
Chemistry ; 27(46): 11904-11911, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34038002

RESUMO

The development of novel and operationally simple synthetic routes to carbene-metal-amido (CMA) complexes of copper, silver and gold relevant for photonic applications are reported. A mild base and sustainable solvents allow all reactions to be conducted in air and at room temperature, leading to high yields of the targeted compounds even on multigram scales. The effect of various mild bases on the N-H metallation was studied in silico and experimentally, while a mechanochemical, solvent-free synthetic approach was also developed. Our photophysical studies on [M(NHC)(Cbz)] (Cbz=carbazolyl) indicate that the occurrence of fluorescent or phosphorescent states is determined primarily by the metal, providing control over the excited state properties. Consequently, we demonstrate the potential of the new CMAs beyond luminescence applications by employing a selected CMA as a photocatalyst. The exemplified synthetic ease is expected to accelerate the applications of CMAs in photocatalysis and materials chemistry.

11.
Chem Soc Rev ; 49(19): 7044-7100, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32914791

RESUMO

The last two decades have seen a veritable explosion in the use of gold(i) complexes bearing N-heterocyclic carbene (NHC) and phosphine (PR3) ligands. Both ligand families have significantly contributed to the stability and design of a plethora of gold complexes. Design is oftentimes associated with application. Here, we wish to present an overview of the synthesis and structural properties of dinuclear gold(i) complexes reported to date with their applications across numerous research areas.

12.
Chemistry ; 26(10): 2183-2186, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31922296

RESUMO

The development of innovative fluorination strategies is greatly dependent also on the availability, safety and practicability of available fluorinating reagents. We herein show a straightforward and quantitative strategy for the preparation of valuable AgOCF3 at room temperature and showcase its performance in trifluoromethoxylations or as reservoir for O=CF2 . This enabled the direct, practical and safe synthesis of valuable N-alkyl/aryl and N-CF3 carbamoyl fluorides from secondary amines and isothiocyanides, respectively. Our mechanistic data indicate that AgOCF3 does not liberate O=CF2 until it is activated by a nucleophilic co-reagent, reinforcing the stability of the salt under our new preparation strategy.

13.
Chemistry ; 26(51): 11868-11876, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32368809

RESUMO

The first palladium organometallic compounds bearing N-trifluoromethyl N-heterocyclic carbenes have been synthesized. These η3 -allyl complexes are potent antiproliferative agents against different cancer lines (for the most part, IC50 values fall in the range 0.02-0.5 µm). By choosing 1,3,5-triaza-7-phosphaadamantane (PTA) as co-ligand, we can improve the selectivity toward tumor cells, whereas the introduction of 2-methyl substituents generally reduces the antitumor activity slightly. A series of biochemical assays, aimed at defining the cellular targets of these palladium complexes, has shown that mitochondria are damaged before DNA, thus revealing a behavior substantially different from that of cisplatin and its derivatives. We assume that the specific mechanism of action of these organometallic compounds involves nucleophilic attack on the η3 -allyl fragment. The effectiveness of a representative complex, 4 c, was verified on ovarian cancer tumoroids derived from patients. The results are promising: unlike carboplatin, our compound turned out to be very active and showed a low toxicity toward normal liver organoids.


Assuntos
Antineoplásicos/química , Cisplatino/farmacologia , Complexos de Coordenação/química , Neoplasias Ovarianas/patologia , Paládio/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/química , Complexos de Coordenação/farmacologia , Feminino , Humanos , Ligantes
14.
Angew Chem Int Ed Engl ; 59(29): 11908-11912, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32293088

RESUMO

Reported herein is the first efficient strategy to synthesize a broad range of unsymmetrical N-CF3 hydrazines, which served as platform to unlock numerous currently inaccessible derivatives, such as tri- and tetra-substituted N-CF3 hydrazines, hydrazones, sulfonyl hydrazines, and valuable N-CF3 indoles. These compounds proved to be remarkably robust, being compatible with acids, bases, and a wide range of synthetic manipulations. The feasibility of RN(CF3 )-NH2 to function as a directing group in C-H functionalization is also showcased.

15.
Chemistry ; 25(40): 9419-9422, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30913326

RESUMO

The use of an air- and moisture-stable dinuclear PdI complex as an efficient catalyst for the formation of C(sp2 )-SeR bonds is here reported. The privileged reactivity of the PdI dimer allows for the direct use of selenolates as nucleophiles in the cross-coupling. Although previous methodologies suffer from catalyst poisoning through the formation of Pd-ate complexes, the mechanistically distinct dinuclear PdI catalyst circumvents this challenge. A wide variety of aryl bromides and iodides were efficiently coupled under relatively mild reaction conditions with broad functional group tolerance. Mechanistic and computational data are presented in support of direct PdI reactivity.

16.
Angew Chem Int Ed Engl ; 58(1): 211-215, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30381881

RESUMO

While there is a growing interest in harnessing synergistic effects of more than one metal in catalysis, relatively little is known beyond bimetallic systems. This report describes the straightforward access to an air-stable Pd trimer and presents unambiguous reactivity data of its privileged capability to differentiate C-I over C-Br bonds in C-C bond formations (arylation and alkylation) of polyhalogenated arenes, which typical Pd0 and PdI -PdI catalysts fail to deliver. Experimental and computational reactivity data, including the first location of a transition state for bond activation by the trimer, are presented, supporting direct trimer reactivity to be feasible.

17.
Chemistry ; 24(3): 567-571, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29205576

RESUMO

While thiophosgene finds widespread usage on a multi-ton scale, its fluorinated counterpart S=CF2 is essentially unexplored in synthesis. Using experimental reactivity tests, ReactIR and computational techniques, we herein showcase that the solid (Me4 N)SCF3 functions as a safe reservoir for S=CF2 . A key feature is that the reactive electrophile is not simply released over time, but instead is liberated under activation with a protic nucleophile. The reactivity of S=CF2 is mild, allowing large-scale and late-stage synthetic applications without special reaction control. The mechanism was fully elucidated, including a rationalization of the role of the Me4 N cation and the origins of selectivity.

18.
Angew Chem Int Ed Engl ; 57(38): 12425-12429, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30014554

RESUMO

This report widens the repertoire of emerging PdI catalysis to carbon-heteroatom, that is, C-S bond formation. While Pd0 -catalyzed protocols may suffer from the formation of poisonous sulfide-bound off-cycle intermediates and lack of selectivity, the mechanistically diverse PdI catalysis concept circumvents these challenges and allows for C-S bond formation (S-aryl and S-alkyl) of a wide range of aryl halides. Site-selective thiolations of C-Br sites in the presence of C-Cl and C-OTf were achieved in a general and a priori predictable fashion. Computational, spectroscopic, X-ray, and reactivity data support dinuclear PdI catalysis to be operative. Contrary to air-sensitive Pd0 , the active PdI species was easily recovered in the open atmosphere and subjected to multiple rounds of recycling.

19.
Angew Chem Int Ed Engl ; 56(1): 221-224, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27936300

RESUMO

Reported herein is the one-pot synthesis of trifluoromethylated amines at room temperature using the bench-stable (Me4 N)SCF3 reagent and AgF. The method is rapid, operationally simple and highly selective. It proceeds via a formal umpolung reaction of the SCF3 with the amine, giving quantitative formation of thiocarbamoyl fluoride intermediates within minutes that can readily be transformed to N-CF3 . The mildness and high functional group tolerance render the method highly attractive for the late-stage introduction of trifluoromethyl groups on amines, as demonstrated herein for a range of pharmaceutically relevant drug molecules.

20.
Angew Chem Int Ed Engl ; 56(25): 7078-7082, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28508520

RESUMO

Disclosed herein is the first general chemo- and site-selective alkylation of C-Br bonds in the presence of COTf, C-Cl and other potentially reactive functional groups, using the air-, moisture-, and thermally stable dinuclear PdI catalyst, [Pd(µ-I)PtBu3 ]2 . The bromo-selectivity is independent of the substrate and the relative positioning of the competing reaction sites, and as such fully predictable. Primary and secondary alkyl chains were introduced with extremely high speed (<5 min reaction time) at room temperature and under open-flask reaction conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa