Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807195

RESUMO

(1) Background: The exact mechanism(s) underlying pathological changes in a heart in transition to hypertrophy and failure are not yet fully understood. However, alterations in cardiac energy metabolism seem to be an important contributor. We characterized an in vitro model of adrenergic stimulation-induced cardiac hypertrophy for studying metabolic, structural, and functional changes over time. Accordingly, we investigated whether metabolic interventions prevent cardiac structural and functional changes; (2) Methods: Primary rat cardiomyocytes were treated with phenylephrine (PE) for 16 h, 24 h, or 48 h, whereafter hypertrophic marker expression, protein synthesis rate, glucose uptake, and contractile function were assessed; (3) Results: 24 h PE treatment increased expression of hypertrophic markers, phosphorylation of hypertrophy-related signaling kinases, protein synthesis, and glucose uptake. Importantly, the increased glucose uptake preceded structural and functional changes, suggesting a causal role for metabolism in the onset of PE-induced hypertrophy. Indeed, PE treatment in the presence of a PAN-Akt inhibitor or of a GLUT4 inhibitor dipyridamole prevented PE-induced increases in cellular glucose uptake and ameliorated PE-induced contractile alterations; (4) Conclusions: Pharmacological interventions, forcing substrate metabolism away from glucose utilization, improved contractile properties in PE-treated cardiomyocytes, suggesting that targeting glucose uptake, independent from protein synthesis, forms a promising strategy to prevent hypertrophy and hypertrophy-induced cardiac dysfunction.


Assuntos
Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Metabolismo Energético , Glucose/metabolismo , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Fenilefrina/farmacologia , Fosforilação , Ratos , Transdução de Sinais/efeitos dos fármacos
2.
J Physiol ; 597(17): 4521-4531, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31314138

RESUMO

Titin functions as a molecular spring, and cardiomyocytes are able, through splicing, to control the length of titin. We hypothesized that together with diastolic [Ca2+ ], titin-based stretch pre-activates cardiomyocytes during diastole and is a major determinant of force production in the subsequent contraction. Through this mechanism titin would play an important role in active force development and length-dependent activation. Mutations in the splicing factor RNA binding motif protein 20 (RBM20) result in expression of large, highly compliant titin isoforms. We measured single cardiomyocyte work loops that mimic the cardiac cycle in wild-type (WT) and heterozygous (HET) RBM20-deficient rats. In addition, we studied the role of diastolic [Ca2+ ] in membrane-permeabilized WT and HET cardiomyocytes. Intact cardiomyocytes isolated from HET left ventricles were unable to produce normal levels of work (55% of WT) at low pacing frequencies, but this difference disappeared at high pacing frequencies. Length-dependent activation (force-sarcomere length relationship) was blunted in HET cardiomyocytes, but the force-end-diastolic force relationship was not different between HET and WT cardiomyocytes. To delineate the effects of diastolic [Ca2+ ] and titin pre-activation on force generation, measurements were performed in detergent-permeabilized cardiomyocytes. Cardiac twitches were simulated by transiently exposing permeabilized cardiomyocytes to 2 µm Ca2+ . Increasing diastolic [Ca2+ ] from 1 to 80 nm increased force development twofold in WT. Higher diastolic [Ca2+ ] was needed in HET. These findings are consistent with our hypothesis that pre-activation increases active force development. Highly compliant titin allows cells to function at higher diastolic [Ca2+ ].


Assuntos
Cálcio/metabolismo , Conectina/metabolismo , Diástole/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Feminino , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Heterozigoto , Masculino , Proteínas Musculares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Sprague-Dawley , Sarcômeros/metabolismo , Sarcômeros/fisiologia
3.
Vasa ; 47(2): 137-142, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29299980

RESUMO

BACKGROUND: The effect of atmospheric pressure (AP) on the onset of abdominal aorta aneurysm rupture (RAAA) remains an unanswered question. We have investigated the seasonal variation and the effect of AP dynamics on RAAA by analysing the largest series of intraoperatively confirmed RAAA. PATIENTS AND METHODS: To realize this study we have performed a retrospective analysis of 546 patients with RAAA, operated within 503 days at the Clinic for vascular and endovascular surgery CCS between 1.1.2003 and 31.12.2012. AP data for Belgrade city were obtained from meteorological yearbooks published by the Republic Hydrometeorological Service of Serbia measured at the hydrometeorological station "Belgrade Observatory". Only patients with a residence within the extended Belgrade region, exposed to the similar AP values, were included in the analysis of the AP effect on RAAA. RESULTS: RAAA were observed more frequently during winter and autumn months but without significant difference in comparison to other seasons. Months with higher AP values were associated with a higher RAAA rate (p = 0.0008, R2 = 0.665). A similar trend was observed for the monthly AP variability (p = 0.0311, R2 = 0.374). Average AP values did not differ between days with and without RAAA. However, during the three and seven days periods preceding RAAA AP variability parameters were greater and AP was rising. CONCLUSIONS: Although these pressure differences are very small, higher AP values over longer periods of time as well as greater variability are associated with RAAA. The exact mechanism behind this association remains unclear. The postulation that low AP may precipitate RAAA based on the Laplace law should be discarded.


Assuntos
Aneurisma da Aorta Abdominal/epidemiologia , Ruptura Aórtica/epidemiologia , Pressão Atmosférica , Estações do Ano , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/cirurgia , Ruptura Aórtica/diagnóstico por imagem , Ruptura Aórtica/cirurgia , Humanos , Incidência , Estudos Retrospectivos , Fatores de Risco , Sérvia/epidemiologia , Fatores de Tempo
4.
ESC Heart Fail ; 8(1): 151-161, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33251761

RESUMO

AIMS: Atrial contractile dysfunction contributes to worse prognosis in hypertensive heart disease (HHD), but the role of cardiomyocyte dysfunction in atrial remodelling in HHD is not well understood. We investigated and compared cellular mechanisms of left (LA) and right atrial (RA) contractile dysfunction in pigs with HHD. METHODS AND RESULTS: In vivo electrophysiological and magnetic resonance imaging studies were performed in control and pigs treated with 11-deoxycorticosterone acetate (DOCA)/high-salt/glucose diet (12 weeks) to induce HHD. HHD leads to significant atrial remodelling and loss of contractile function in LA and a similar trend in RA (magnetic resonance imaging). Atrial remodelling was associated with a higher inducibility of atrial fibrillation but unrelated to changes in atrial refractory period or fibrosis (histology). Reduced atrial function in DOCA pigs was related to reduced contraction amplitude of isolated LA (already at baseline) and RA myocytes (at higher frequencies) due to reduced intracellular Ca release (Fura 2-AM, field stimulation). However, Ca regulation differed in LA and RA cardiomyocytes: LA cardiomyocytes showed reduced sarcoplasmic reticulum (SR) [Ca], whereas in RA, SR [Ca] was unchanged and SR Ca2+ -ATPase activity was increased. Sodium-calcium exchanger (NCX) activity was not significantly altered. We used ORM-10103 (3 µM), a specific NCX inhibitor to improve Ca availability in LA and RA cardiomyocytes from DOCA pigs. Partial inhibition of NCX increased Ca2+ transient amplitude and SR Ca in LA, but not RA cells. CONCLUSIONS: In this large animal model of HHD, atrial remodelling in sinus rhythm in vivo was related to differential LA and RA cardiomyocyte dysfunction and Ca signalling. Selective acute inhibition of NCX improved Ca release in diseased LA cardiomyocytes, suggesting a potential therapeutic approach to improve atrial inotropy in HHD.


Assuntos
Cálcio , Hipertensão , Animais , Cálcio/metabolismo , Átrios do Coração/diagnóstico por imagem , Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio , Suínos
5.
Front Physiol ; 9: 1108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30166973

RESUMO

Spontaneous Ca2+-release events (SCaEs) from the sarcoplasmic reticulum play crucial roles in the initiation of cardiac arrhythmias by promoting triggered activity. However, the subcellular determinants of these SCaEs remain incompletely understood. Structural differences between atrial and ventricular cardiomyocytes, e.g., regarding the density of T-tubular membrane invaginations, may influence cardiomyocyte Ca2+-handling and the distribution of cardiac ryanodine receptors (RyR2) has recently been shown to undergo remodeling in atrial fibrillation. These data suggest that the subcellular distribution of Ca2+-handling proteins influences proarrhythmic Ca2+-handling abnormalities. Here, we employ computational modeling to provide an in-depth analysis of the impact of variations in subcellular RyR2 and L-type Ca2+-channel distributions on Ca2+-transient properties and SCaEs in a human atrial cardiomyocyte model. We incorporate experimentally observed RyR2 expression patterns and various configurations of axial tubules in a previously published model of the human atrial cardiomyocyte. We identify an increased SCaE incidence for larger heterogeneity in RyR2 expression, in which SCaEs preferentially arise from regions of high local RyR2 expression. Furthermore, we show that the propagation of Ca2+ waves is modulated by the distance between RyR2 bands, as well as the presence of experimentally observed RyR2 clusters between bands near the lateral membranes. We also show that incorporation of axial tubules in various amounts and locations reduces Ca2+-transient time to peak. Furthermore, selective hyperphosphorylation of RyR2 around axial tubules increases the number of spontaneous waves. Finally, we present a novel model of the human atrial cardiomyocyte with physiological RyR2 and L-type Ca2+-channel distributions that reproduces experimentally observed Ca2+-handling properties. Taken together, these results significantly enhance our understanding of the structure-function relationship in cardiomyocytes, identifying that RyR2 and L-type Ca2+-channel distributions have a major impact on systolic Ca2+ transients and SCaEs.

6.
Heart Rhythm ; 15(9): 1328-1336, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29803020

RESUMO

BACKGROUND: Arterial hypertension (HT) contributes to progression of atrial fibrillation (AF) via unknown mechanisms. OBJECTIVE: We aimed to characterize electrical and structural changes accounting for increased AF stability in a large animal model of rapid atrial pacing (RAP)-induced AF combined with desoxycorticosterone acetate (DOCA)-induced HT. METHODS: Eighteen pigs were instrumented with right atrial endocardial pacemaker leads and custom-made pacemakers to induce AF by continuous RAP (600 beats/min). DOCA pellets were subcutaneously implanted in a subgroup of 9 animals (AF+HT group); the other 9 animals served as controls (AF group). Final experiments included electrophysiology studies, endocardial electroanatomic mapping, and high-density mapping with epicardial multielectrode arrays. In addition, 3-dimensional computational modeling was performed. RESULTS: DOCA implantation led to secondary HT (median [interquartile range] aortic pressure 109.9 [100-137] mm Hg in AF+HT vs 82.2 [79-96] mm Hg in AF; P < .05), increased AF stability (55.6% vs 12.5% of animals with AF episodes lasting >1 hour; P < .05), concentric left ventricular hypertrophy, atrial dilatation (119 ± 31 cm2 in AF+HT vs 78 ± 23 cm2 in AF; P < .05), and fibrosis. Collagen accumulation in the AF+HT group was mainly found in non-intermyocyte areas (1.62 ± 0.38 cm3 in AF+HT vs 0.96 ± 0.3 cm3 in AF; P < .05). Left and right atrial effective refractory periods, action potential durations, endo- and epicardial conduction velocities, and measures of AF complexity were comparable between the 2 groups. A 3-dimensional computational model confirmed an increase in AF stability observed in the in vivo experiments associated with increased atrial size. CONCLUSION: In this model of secondary HT, higher AF stability after 2 weeks of RAP is mainly driven by atrial dilatation.


Assuntos
Fibrilação Atrial/fisiopatologia , Remodelamento Atrial , Pressão Sanguínea/fisiologia , Simulação por Computador , Átrios do Coração/fisiopatologia , Frequência Cardíaca/fisiologia , Hipertensão/complicações , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/terapia , Modelos Animais de Doenças , Eletrocardiografia , Átrios do Coração/diagnóstico por imagem , Hipertensão/fisiopatologia , Marca-Passo Artificial , Suínos
7.
Prog Biophys Mol Biol ; 130(Pt B): 288-301, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28648626

RESUMO

In cardiac myocytes, calcium (Ca2+) signalling is tightly controlled in dedicated microdomains. At the dyad, i.e. the narrow cleft between t-tubules and junctional sarcoplasmic reticulum (SR), many signalling pathways combine to control Ca2+-induced Ca2+ release during contraction. Local Ca2+ gradients also exist in regions where SR and mitochondria are in close contact to regulate energetic demands. Loss of microdomain structures, or dysregulation of local Ca2+ fluxes in cardiac disease, is often associated with oxidative stress, contractile dysfunction and arrhythmias. Ca2+ signalling at these microdomains is highly mechanosensitive. Recent work has demonstrated that increasing mechanical load triggers rapid local Ca2+ releases that are not reflected by changes in global Ca2+. Key mechanisms involve rapid mechanotransduction with reactive oxygen species or nitric oxide as primary signalling molecules targeting SR or mitochondria microdomains depending on the nature of the mechanical stimulus. This review summarizes the most recent insights in rapid Ca2+ microdomain mechanosensitivity and re-evaluates its (patho)physiological significance in the context of historical data on the macroscopic role of Ca2+ in acute force adaptation and mechanically-induced arrhythmias. We distinguish between preload and afterload mediated effects on local Ca2+ release, and highlight differences between atrial and ventricular myocytes. Finally, we provide an outlook for further investigation in chronic models of abnormal mechanics (eg post-myocardial infarction, atrial fibrillation), to identify the clinical significance of disturbed Ca2+ mechanosensitivity for arrhythmogenesis.


Assuntos
Sinalização do Cálcio , Fenômenos Mecânicos , Miocárdio/citologia , Animais , Arritmias Cardíacas/patologia , Fenômenos Biomecânicos , Humanos , Estresse Mecânico
8.
PLoS One ; 12(8): e0182915, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28837585

RESUMO

Experimental studies on isolated cardiomyocytes from different animal species and human hearts have demonstrated that there are regional differences in the Ca2+ release, Ca2+ decay and sarcomere deformation. Local deformation heterogeneities can occur due to a combination of factors: regional/local differences in Ca2+ release and/or re-uptake, intra-cellular material properties, sarcomere proteins and distribution of the intracellular organelles. To investigate the possible causes of these heterogeneities, we developed a two-dimensional finite-element electromechanical model of a cardiomyocyte that takes into account the experimentally measured local deformation and cytosolic [Ca2+] to locally define the different variables of the constitutive equations describing the electro/mechanical behaviour of the cell. Then, the model was individualised to three different rat cardiac cells. The local [Ca2+] transients were used to define the [Ca2+]-dependent activation functions. The cell-specific local Young's moduli were estimated by solving an inverse problem, minimizing the error between the measured and simulated local deformations along the longitudinal axis of the cell. We found that heterogeneities in the deformation during contraction were determined mainly by the local elasticity rather than the local amount of Ca2+, while in the relaxation phase deformation was mainly influenced by Ca2+ re-uptake. Our electromechanical model was able to successfully estimate the local elasticity along the longitudinal direction in three different cells. In conclusion, our proposed model seems to be a good approximation to assess the heterogeneous intracellular mechanical properties to help in the understanding of the underlying mechanisms of cardiomyocyte dysfunction.


Assuntos
Modelos Biológicos , Miócitos Cardíacos/citologia , Animais , Cálcio/metabolismo , Análise de Elementos Finitos , Masculino , Miócitos Cardíacos/metabolismo , Ratos , Ratos Endogâmicos Lew
9.
Diabetes ; 66(6): 1521-1534, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28302654

RESUMO

Dietary fat overconsumption leads to myocardial lipid accumulation through mechanisms that are incompletely resolved. Previously, we identified increased translocation of the fatty acid transporter CD36 from its endosomal storage compartment to the sarcolemma as the primary mechanism of excessive myocellular lipid import. Here, we show that increased CD36 translocation is caused by alkalinization of endosomes resulting from inhibition of proton pumping activity of vacuolar-type H+-ATPase (v-ATPase). Endosomal alkalinization was observed in hearts from rats fed a lard-based high-fat diet and in rodent and human cardiomyocytes upon palmitate overexposure, and appeared as an early lipid-induced event preceding the onset of insulin resistance. Either genetic or pharmacological inhibition of v-ATPase in cardiomyocytes exposed to low palmitate concentrations reduced insulin sensitivity and cardiomyocyte contractility, which was rescued by CD36 silencing. The mechanism of palmitate-induced v-ATPase inhibition involved its dissociation into two parts: the cytosolic V1 and the integral membrane V0 subcomplex. Interestingly, oleate also inhibits v-ATPase function, yielding triacylglycerol accumulation but not insulin resistance. In conclusion, lipid oversupply increases CD36-mediated lipid uptake that directly impairs v-ATPase function. This feeds forward to enhanced CD36 translocation and further increased lipid uptake. In the case of palmitate, its accelerated uptake ultimately precipitates into cardiac insulin resistance and contractile dysfunction.


Assuntos
Antígenos CD36/metabolismo , Endossomos/efeitos dos fármacos , Glucose/metabolismo , Coração/efeitos dos fármacos , Resistência à Insulina , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Palmitatos/farmacologia , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Animais , Western Blotting , Radioisótopos de Carbono , Células Cultivadas , Desoxiglucose/metabolismo , Dieta Hiperlipídica , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Células-Tronco Pluripotentes Induzidas , Masculino , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos Lew , Triglicerídeos/metabolismo , Trítio , Troponina T/genética
10.
Eur J Heart Fail ; 18(8): 987-97, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27135883

RESUMO

AIMS: Heart failure with preserved ejection fraction (HFpEF) is increasingly common, but the underlying cellular mechanisms are not well understood. We investigated cardiomyocyte function and the role of SEA0400, an Na(+) /Ca(2+) exchanger (NCX) inhibitor in a rat model of chronic kidney disease (CKD) with HFpEF. METHODS AND RESULTS: Male Wistar rats were subjected to subtotal nephrectomy (NXT) or sham operation (Sham). After 8 and 24 weeks, in vivo (haemodynamics, echocardiography) and in vitro function (LV cardiomyocyte cell shortening (CS), and Ca(2+) transients (CaT)) were determined without and with SEA0400. In a subgroup of rats, SEA0400 or vehicle was given p.o. (1 mg/kg b.w.) between week 8 and 24. NXT resulted in stable compensated CKD and HFpEF [hypertrophied left ventricle, prolonged LV isovolumetric relaxation constant TAU (IVRc TAU), elevated end diastolic pressure (EDP), increased lung weight (pulmonary congestion), and preserved LV systolic function (EF, dP/dt)]. In NXT cardiomyocytes, the amplitude of CS and CaT were unchanged but relaxation and CaT decay were progressively prolonged at 8 and 24 weeks vs. Sham, individually correlating with diastolic dysfunction in vivo. NCX forward mode activity (caffeine response) was progressively reduced, while NCX protein expression was up-regulated, suggesting increased NCX reverse mode activity in NXT. SEA0400 acutely improved relaxation in NXT in vivo and in cardiomyocytes and improved cardiac remodelling and diastolic function when given chronically. CONCLUSIONS: This model of renal HFpEF is associated with slowed relaxation of LV cardiomyocytes. Treatment with SEA0400 improved cardiomyocyte function, remodelling, and HFpEF.


Assuntos
Compostos de Anilina/farmacologia , Insuficiência Cardíaca/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Éteres Fenílicos/farmacologia , Insuficiência Renal Crônica/fisiopatologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Volume Sistólico , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Ecocardiografia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Ratos Wistar , Insuficiência Renal Crônica/complicações
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa