Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Microbiol ; 103(1): 181-194, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27731916

RESUMO

Organisms have evolved motility organelles that allow them to move to favourable habitats. Cells integrate environmental stimuli into intracellular signals to motility machineries to direct this migration. Many motility organelles are complex surface appendages that have evolved a tight, hierarchical regulation of expression. In the crenearchaeon Sulfolobus acidocaldarius, biosynthesis of the archaellum is regulated by regulatory network proteins that control expression of archaellum components in a phosphorylation-dependent manner. A major trigger for archaellum expression is nutrient starvation, but although some components are known, the regulatory cascade triggered by starvation is poorly understood. In this work, the starvation-induced Ser/Thr protein kinase ArnS (Saci_1181) which is located proximally to the archaellum operon was identified. Deletion of arnS results in reduced motility, though the archaellum is properly assembled. Therefore, our experimental and modelling results indicate that ArnS plays an essential role in the precisely controlled expression of archaellum components during starvation-induced motility in Sulfolobus acidocaldarius. Furthermore they combined in vivo experiments and mathematical models to describe for the first time in archaea the dynamics of key regulators of archaellum expression.


Assuntos
Sulfolobus acidocaldarius/metabolismo , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Citoplasma/metabolismo , Flagelos/metabolismo , Regulação da Expressão Gênica em Archaea/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Inanição/metabolismo , Sulfolobus acidocaldarius/genética , Fatores de Transcrição/metabolismo
2.
J Theor Biol ; 398: 64-73, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-26995333

RESUMO

Adaptation in cellular systems is often mediated by negative feedbacks, which usually come with certain time delays causing several characteristic response patterns including an overdamped response, damped or sustained oscillations. Here, we analyse generic two-dimensional delay differential equations with delayed negative feedback describing the dynamics of biochemical adaptive signal-response networks. We derive explicit thresholds and boundaries showing how time delay determines characteristic response patterns of these networks. Applying our theoretical analyses to concrete data we show that adaptation to osmotic stress in yeast is optimal in the sense of minimizing adaptation time without causing oscillatory behaviour, i.e., a critically damped response. In addition, our framework demonstrates that a slight increase of time delay in the NF-κB system might induce a switch from damped to sustained oscillatory behaviour. Thus, we demonstrate how delay differential equations can be used to explicitly study the delay in biochemical negative feedback systems. Our analysis also provides insight into how time delay may tune biological signal-response patterns and control the systems behaviour.


Assuntos
Adaptação Fisiológica , Retroalimentação Fisiológica , Simulação por Computador , Glicerol/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Concentração Osmolar , Fatores de Tempo
3.
Int J Biometeorol ; 60(11): 1711-1726, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27059366

RESUMO

This study investigates whether the assumed increase of winter and spring temperatures is depicted by phenological models in correspondingly earlier bud burst (BB) dates. Some studies assume that rising temperatures lead to an earlier BB, but even later BB has been detected. The phenological model PIM (promoter-inhibitor-model) fitted to the extensive phenological database of the German Weather Service was driven by several climate scenarios. This model accounts for the complicated mechanistic interactions between chilling requirements, temperature and photo-period. It predicts BB with a r 2 between 0.41 and 0.62 and a RMSE of around 1 week, depending on species. Parameter sensitivities depict species dependent interactions between growth and chilling requirements as well as photo-period. A mean trend to earlier BB was revealed for the period 2002- 2100, varying between -0.05 and -0.11 days per year, depending on species. These trends are lower than for the period 1951- 2009. Within climate scenario period, trends are decreasing for beech and chestnut, stagnating for birch and increasing for oak. Results suggest that not fulfilled chilling requirements accompanied by an increasing dependency on photo-period potentially limit future BB advancement. The combination of a powerful phenological model, a large scale phenological database and several climate scenarios, offers new insights into the mechanistic comprehension of spring phenology.


Assuntos
Magnoliopsida/crescimento & desenvolvimento , Modelos Teóricos , Folhas de Planta/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Clima , Florestas , Alemanha , Fotoperíodo , Estações do Ano , Temperatura
4.
BMC Bioinformatics ; 16: 392, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26589438

RESUMO

BACKGROUND: The number of γH2AX foci per nucleus is an accepted measure of the number of DNA double-strand breaks in single cells. One of the experimental techniques for γH2AX detection in cultured cells is immunofluorescent labelling of γH2AX and nuclei followed by microscopy imaging and analysis. RESULTS: In this study, we present the algorithm FoCo for reliable and robust automatic nuclear foci counting in single cell images. FoCo has the following advantages with respect to other software packages: i) the ability to reliably quantify even densely distributed foci, e.g., on images of cells subjected to radiation doses up to 10 Gy, ii) robustness of foci quantification in the sense of suppressing out-of-focus background signal, and iii) its simplicity. FoCo requires only 5 parameters that have to be adjusted by the user. CONCLUSIONS: FoCo is an open-source user-friendly software with GUI for individual foci counting, which is able to produce reliable and robust foci quantifications even for low signal/noise ratios and densely distributed foci.


Assuntos
Núcleo Celular/genética , Quebras de DNA de Cadeia Dupla , Microscopia de Fluorescência/métodos , Análise de Célula Única/métodos
5.
Mol Microbiol ; 92(6): 1343-56, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24798644

RESUMO

Arsenic has a dual role as causative and curative agent of human disease. Therefore, there is considerable interest in elucidating arsenic toxicity and detoxification mechanisms. By an ensemble modelling approach, we identified a best parsimonious mathematical model which recapitulates and predicts intracellular arsenic dynamics for different conditions and mutants, thereby providing novel insights into arsenic toxicity and detoxification mechanisms in yeast, which could partly be confirmed experimentally by dedicated experiments. Specifically, our analyses suggest that: (i) arsenic is mainly protein-bound during short-term (acute) exposure, whereas glutathione-conjugated arsenic dominates during long-term (chronic) exposure, (ii) arsenic is not stably retained, but can leave the vacuole via an export mechanism, and (iii) Fps1 is controlled by Hog1-dependent and Hog1-independent mechanisms during arsenite stress. Our results challenge glutathione depletion as a key mechanism for arsenic toxicity and instead suggest that (iv) increased glutathione biosynthesis protects the proteome against the damaging effects of arsenic and that (v) widespread protein inactivation contributes to the toxicity of this metalloid. Our work in yeast may prove useful to elucidate similar mechanisms in higher eukaryotes and have implications for the use of arsenic in medical therapy.


Assuntos
Arsênio/metabolismo , Modelos Teóricos , Saccharomyces cerevisiae/metabolismo , Biotransformação , Inativação Metabólica
6.
PLoS Comput Biol ; 9(6): e1003084, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762021

RESUMO

We provide an integrated dynamic view on a eukaryotic osmolyte system, linking signaling with regulation of gene expression, metabolic control and growth. Adaptation to osmotic changes enables cells to adjust cellular activity and turgor pressure to an altered environment. The yeast Saccharomyces cerevisiae adapts to hyperosmotic stress by activating the HOG signaling cascade, which controls glycerol accumulation. The Hog1 kinase stimulates transcription of genes encoding enzymes required for glycerol production (Gpd1, Gpp2) and glycerol import (Stl1) and activates a regulatory enzyme in glycolysis (Pfk26/27). In addition, glycerol outflow is prevented by closure of the Fps1 glycerol facilitator. In order to better understand the contributions to glycerol accumulation of these different mechanisms and how redox and energy metabolism as well as biomass production are maintained under such conditions we collected an extensive dataset. Over a period of 180 min after hyperosmotic shock we monitored in wild type and different mutant cells the concentrations of key metabolites and proteins relevant for osmoadaptation. The dataset was used to parameterize an ODE model that reproduces the generated data very well. A detailed computational analysis using time-dependent response coefficients showed that Pfk26/27 contributes to rerouting glycolytic flux towards lower glycolysis. The transient growth arrest following hyperosmotic shock further adds to redirecting almost all glycolytic flux from biomass towards glycerol production. Osmoadaptation is robust to loss of individual adaptation pathways because of the existence and upregulation of alternative routes of glycerol accumulation. For instance, the Stl1 glycerol importer contributes to glycerol accumulation in a mutant with diminished glycerol production capacity. In addition, our observations suggest a role for trehalose accumulation in osmoadaptation and that Hog1 probably directly contributes to the regulation of the Fps1 glycerol facilitator. Taken together, we elucidated how different metabolic adaptation mechanisms cooperate and provide hypotheses for further experimental studies.


Assuntos
Glicerol/metabolismo , Pressão Osmótica , Saccharomyces cerevisiae/metabolismo , Glicólise , Modelos Biológicos
7.
Mol Syst Biol ; 8: 622, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23149687

RESUMO

The high osmolarity glycerol (HOG) pathway in yeast serves as a prototype signalling system for eukaryotes. We used an unprecedented amount of data to parameterise 192 models capturing different hypotheses about molecular mechanisms underlying osmo-adaptation and selected a best approximating model. This model implied novel mechanisms regulating osmo-adaptation in yeast. The model suggested that (i) the main mechanism for osmo-adaptation is a fast and transient non-transcriptional Hog1-mediated activation of glycerol production, (ii) the transcriptional response serves to maintain an increased steady-state glycerol production with low steady-state Hog1 activity, and (iii) fast negative feedbacks of activated Hog1 on upstream signalling branches serves to stabilise adaptation response. The best approximating model also indicated that homoeostatic adaptive systems with two parallel redundant signalling branches show a more robust and faster response than single-branch systems. We corroborated this notion to a large extent by dedicated measurements of volume recovery in single cells. Our study also demonstrates that systematically testing a model ensemble against data has the potential to achieve a better and unbiased understanding of molecular mechanisms.


Assuntos
Retroalimentação Fisiológica , Homeostase , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Adaptação Fisiológica , Proteínas Cromossômicas não Histona/metabolismo , Simulação por Computador , Proteínas de Ligação a DNA/metabolismo , Glicerol/metabolismo , Espaço Intracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação/genética , Pressão Osmótica , Fosforilação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Transcrição Gênica
8.
Int J Biometeorol ; 57(5): 805-12, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23512285

RESUMO

We present an online database that provides unrestricted and free access to over 16 million plant phenological observations from over 8,000 stations in Central Europe between the years 1880 and 2009. Unique features are (1) a flexible and unrestricted access to a full-fledged database, allowing for a wide range of individual queries and data retrieval, (2) historical data for Germany before 1951 ranging back to 1880, and (3) more than 480 curated long-term time series covering more than 100 years for individual phenological phases and plants combined over Natural Regions in Germany. Time series for single stations or Natural Regions can be accessed through a user-friendly graphical geo-referenced interface. The joint databases made available with the plant phenological database PPODB render accessible an important data source for further analyses of long-term changes in phenology. The database can be accessed via www.ppodb.de .


Assuntos
Clima , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Internet , Fenômenos Fisiológicos Vegetais , Plantas/classificação , Tempo (Meteorologia) , Sistemas On-Line
9.
Eur Biophys J ; 39(11): 1547-56, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20563574

RESUMO

Parameterized models of biophysical and mechanical cell properties are important for predictive mathematical modeling of cellular processes. The concepts of turgor, cell wall elasticity, osmotically active volume, and intracellular osmolarity have been investigated for decades, but a consistent rigorous parameterization of these concepts is lacking. Here, we subjected several data sets of minimum volume measurements in yeast obtained after hyper-osmotic shock to a thermodynamic modeling framework. We estimated parameters for several relevant biophysical cell properties and tested alternative hypotheses about these concepts using a model discrimination approach. In accordance with previous reports, we estimated an average initial turgor of 0.6 ± 0.2 MPa and found that turgor becomes negligible at a relative volume of 93.3 ± 6.3% corresponding to an osmotic shock of 0.4 ± 0.2 Osm/l. At high stress levels (4 Osm/l), plasmolysis may occur. We found that the volumetric elastic modulus, a measure of cell wall elasticity, is 14.3 ± 10.4 MPa. Our model discrimination analysis suggests that other thermodynamic quantities affecting the intracellular water potential, for example the matrix potential, can be neglected under physiological conditions. The parameterized turgor models showed that activation of the osmosensing high osmolarity glycerol (HOG) signaling pathway correlates with turgor loss in a 1:1 relationship. This finding suggests that mechanical properties of the membrane trigger HOG pathway activation, which can be represented and quantitatively modeled by turgor.


Assuntos
Fenômenos Biofísicos , Glicerol/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Membrana Celular/metabolismo , Parede Celular/metabolismo , Módulo de Elasticidade , Espaço Extracelular/metabolismo , Espaço Intracelular/metabolismo , Modelos Biológicos , Pressão Osmótica , Reprodutibilidade dos Testes , Termodinâmica
10.
Essays Biochem ; 45: 147-59, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18793130

RESUMO

Volume is a highly regulated property of cells, because it critically affects intracellular concentration. In the present chapter, we focus on the short-term volume regulation in yeast as a consequence of a shift in extracellular osmotic conditions. We review a basic thermodynamic framework to model volume and solute flows. In addition, we try to select a model for turgor, which is an important hydrodynamic property, especially in walled cells. Finally, we demonstrate the validity of the presented approach by fitting the dynamic model to a time course of volume change upon osmotic shock in yeast.


Assuntos
Saccharomyces cerevisiae/citologia , Modelos Biológicos , Pressão , Reologia , Fatores de Tempo
11.
Genome Inform ; 20: 52-63, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19425122

RESUMO

Mathematical modeling of biological systems usually involves implementing, simulating, and discriminating several candidate models that represent alternative hypotheses. Generating and managing these candidate models is a tedious and difficult task and can easily lead to errors. ModelMage is a tool that facilitates management of candidate models. It is designed for the easy and rapid development, generation, simulation, and discrimination of candidate models. The main idea of the program is to automatically create a defined set of model alternatives from a single master model. The user provides only one SBML-model and a set of directives from which the candidate models are created by leaving out species, modifiers or reactions. After generating models the software can automatically fit all these models to the data and provides a ranking for model selection, in case data is available. In contrast to other model generation programs, ModelMage aims at generating only a limited set of models that the user can precisely define. ModelMage uses COPASI as a simulation and optimization engine. Thus, all simulation and optimization features of COPASI are readily incorporated. ModelMage can be downloaded from http://sysbio.molgen.mpg.de/modelmage and is distributed as free software.


Assuntos
Modelos Genéticos , Seleção Genética , Automação , Simulação por Computador , Análise Discriminante , Documentação , Cinética , Software , Especificidade da Espécie
12.
Genome Inform ; 20: 77-90, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19425124

RESUMO

We present a model of osmoadaptation in S. cerevisiae based on existing experimental and theoretical work. In order to investigate the impact of osmoadaptation on glycolysis, this model focuses on the interactions between glycolysis and osmoadaptation, namely the production of glycerol and its influence on flux towards pyruvate. Evaluation of this model shows that, depending on initial relations between glycerol and pyruvate production, the increased glycerol production can have a substantial negative effect on the pyruvate production rate. Existing experimental data and a detailed analysis of the model lead to the suggestion of an interaction between activated Hog1 and activators of glycolysis such as Pfk26.


Assuntos
Glicólise/genética , Modelos Genéticos , Saccharomyces cerevisiae/genética , Simulação por Computador , Enzimas/genética , Enzimas/metabolismo , Regulação Fúngica da Expressão Gênica , Glicerol/metabolismo , Cinética , Modelos Biológicos , Biologia Molecular/métodos , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Transcrição Gênica
13.
Oncotarget ; 8(19): 30656-30671, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28427150

RESUMO

DNA-damage-induced apoptosis and cellular senescence are perceived as two distinct cell fates. We found that after ionizing radiation (IR)-induced DNA damage the majority (up to 70 %) of senescent human diploid fibroblasts (HDFs) were subjected to controlled cleavage of DNA, resulting in the establishment of a viable and stable sub-G1 population, i.e. deeply senescent cells. We show that in senescent HDFs this DNA cleavage is triggered by modest loss of the mitochondrial membrane potential, which is not sufficient to activate caspases, but strong enough to release mitochondrial endonuclease G (EndoG). We demonstrate that upon γ-irradiation in HDFs EndoG translocates into the nucleus playing an essential role in the non-lethal cleavage of damaged DNA. Notably, the established sub-G1 cell population does not contribute to the senescence-associated secretory phenotype (SASP), however, it exhibits increased senescence-associated ß-galactosidase activity. We show that EndoG knockdown causes an increase in DNA damage, indicating a role of this enzyme in DNA repair. Thus, we conclude that IR-induced deep senescence of HDFs exhibits features of both senescence, such as cell cycle arrest and viability, and apoptosis like reduced DNA content and no SASP, and, resembles uncomplete or stalled apoptosis, a phenomenon we term senoptosis.


Assuntos
Senescência Celular/fisiologia , Clivagem do DNA , Apoptose , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Citocinas/metabolismo , Dano ao DNA , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Transdução de Sinais , Superóxidos/metabolismo , beta-Galactosidase/metabolismo
14.
PLoS One ; 12(7): e0180331, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28692669

RESUMO

Sulfolobus solfataricus is a thermoacidophilic Archaeon that thrives in terrestrial hot springs (solfatares) with optimal growth at 80°C and pH 2-4. It catabolizes specific carbon sources, such as D-glucose, to pyruvate via the modified Entner-Doudoroff (ED) pathway. This pathway has two parallel branches, the semi-phosphorylative and the non-phosphorylative. However, the strategy of S.solfataricus to endure in such an extreme environment in terms of robustness and adaptation is not yet completely understood. Here, we present the first dynamic mathematical model of the ED pathway parameterized with quantitative experimental data. These data consist of enzyme activities of the branched pathway at 70°C and 80°C and of metabolomics data at the same temperatures for the wild type and for a metabolic engineered knockout of the semi-phosphorylative branch. We use the validated model to address two questions: 1. Is this system more robust to perturbations at its optimal growth temperature? 2. Is the ED robust to deletion and perturbations? We employed a systems biology approach to answer these questions and to gain further knowledge on the emergent properties of this biological system. Specifically, we applied deterministic and stochastic approaches to study the sensitivity and robustness of the system, respectively. The mathematical model we present here, shows that: 1. Steady state metabolite concentrations of the ED pathway are consistently more robust to stochastic internal perturbations at 80°C than at 70°C; 2. These metabolite concentrations are highly robust when faced with the knockout of either branch. Connected with this observation, these two branches show different properties at the level of metabolite production and flux control. These new results reveal how enzyme kinetics and metabolomics synergizes with mathematical modelling to unveil new systemic properties of the ED pathway in S.solfataricus in terms of its adaptation and robustness.


Assuntos
Redes e Vias Metabólicas , Modelos Biológicos , Sulfolobus solfataricus/metabolismo , Biologia de Sistemas/métodos , Técnicas de Inativação de Genes , Metaboloma , Método de Monte Carlo , Piruvatos/metabolismo , Reprodutibilidade dos Testes , Processos Estocásticos , Incerteza
15.
FEBS J ; 273(15): 3520-33, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16884493

RESUMO

Cells must be able to process multiple information in parallel and, moreover, they must also be able to combine this information in order to trigger the appropriate response. This is achieved by wiring signalling pathways such that they can interact with each other, a phenomenon often called crosstalk. In this study, we employ mathematical modelling techniques to analyse dynamic mechanisms and measures of crosstalk. We present a dynamic mathematical model that compiles current knowledge about the wiring of the pheromone pathway and the filamentous growth pathway in yeast. We consider the main dynamic features and the interconnections between the two pathways in order to study dynamic crosstalk between these two pathways in haploid cells. We introduce two new measures of dynamic crosstalk, the intrinsic specificity and the extrinsic specificity. These two measures incorporate the combined signal of several stimuli being present simultaneously and seem to be more stable than previous measures. When both pathways are responsive and stimulated, the model predicts that (a) the filamentous growth pathway amplifies the response of the pheromone pathway, and (b) the pheromone pathway inhibits the response of filamentous growth pathway in terms of mitogen activated protein kinase activity and transcriptional activity, respectively. Among several mechanisms we identified leakage of activated Ste11 as the most influential source of crosstalk. Moreover, we propose new experiments and predict their outcomes in order to test hypotheses about the mechanisms of crosstalk between the two pathways. Studying signals that are transmitted in parallel gives us new insights about how pathways and signals interact in a dynamical way, e.g., whether they amplify, inhibit, delay or accelerate each other.


Assuntos
Feromônios/fisiologia , Saccharomyces cerevisiae/fisiologia , Método de Monte Carlo , Saccharomyces cerevisiae/crescimento & desenvolvimento
16.
BMC Syst Biol ; 10(1): 82, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27558510

RESUMO

BACKGROUND: Negative feedback in combination with time delay can bring about both sustained oscillations and adaptive behaviour in cellular networks. Here, we study which design features of systems with delayed negative feedback shape characteristic response patterns with special emphasis on the role of time delay. To this end, we analyse generic two-dimensional delay differential equations describing the dynamics of biochemical signal-response networks. RESULTS: We investigate the influence of several design features on the stability of the model equilibrium, i.e., presence of auto-inhibition and/or mass conservation and the kind and/or strength of the delayed negative feedback. We show that auto-inhibition and mass conservation have a stabilizing effect, whereas increasing abruptness and decreasing feedback threshold have a de-stabilizing effect on the model equilibrium. Moreover, applying our theoretical analysis to the mammalian p53 system we show that an auto-inhibitory feedback can decouple period and amplitude of an oscillatory response, whereas the delayed feedback can not. CONCLUSIONS: Our theoretical framework provides insight into how time delay and design features of biochemical networks act together to elicit specific characteristic response patterns. Such insight is useful for constructing synthetic networks and controlling their behaviour in response to external stimulation.


Assuntos
Retroalimentação Fisiológica , Modelos Biológicos , Fatores de Tempo , Proteína Supressora de Tumor p53/metabolismo
17.
Aging (Albany NY) ; 8(1): 158-77, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26830321

RESUMO

Excessive DNA damage can induce an irreversible cell cycle arrest, called senescence, which is generally perceived as an important tumour-suppressor mechanism. However, it is unclear how cells decide whether to senesce or not after DNA damage. By combining experimental data with a parameterized mathematical model we elucidate this cell fate decision at the G1-S transition. Our model provides a quantitative and conceptually new understanding of how human fibroblasts decide whether DNA damage is beyond repair and senesce. Model and data imply that the G1-S transition is regulated by a bistable hysteresis switch with respect to Cdk2 activity, which in turn is controlled by the Cdk2/p21 ratio rather than cyclin abundance. We experimentally confirm the resulting predictions that to induce senescence i) in healthy cells both high initial and elevated background DNA damage are necessary and sufficient, and ii) in already damaged cells much lower additional DNA damage is sufficient. Our study provides a mechanistic explanation of a) how noise in protein abundances allows cells to overcome the G1-S arrest even with substantial DNA damage, potentially leading to neoplasia, and b) how accumulating DNA damage with age increasingly sensitizes cells for senescence.


Assuntos
Proliferação de Células , Senescência Celular , Dano ao DNA , Fibroblastos/patologia , Proliferação de Células/efeitos da radiação , Células Cultivadas , Senescência Celular/efeitos da radiação , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta à Radiação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Modelos Biológicos , Cultura Primária de Células , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
18.
Sci Rep ; 6: 30950, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27515486

RESUMO

Adaptation is an important property of living organisms enabling them to cope with environmental stress and maintaining homeostasis. Adaptation is mediated by signaling pathways responding to different stimuli. Those signaling pathways might communicate in order to orchestrate the cellular response to multiple simultaneous stimuli, a phenomenon called crosstalk. Here, we investigate possible mechanisms of crosstalk between the High Osmolarity Glycerol (HOG) and the Cell Wall Integrity (CWI) pathways in yeast, which mediate adaptation to hyper- and hypo-osmotic challenges, respectively. We combine ensemble modeling with experimental investigations to test in quantitative terms different hypotheses about the crosstalk of the HOG and the CWI pathways. Our analyses indicate that for the conditions studied i) the CWI pathway activation employs an adaptive mechanism with a variable volume-dependent threshold, in contrast to the HOG pathway, whose activation relies on a fixed volume-dependent threshold, ii) there is no or little direct crosstalk between the HOG and CWI pathways, and iii) its mainly the HOG alone mediating adaptation of cellular osmotic pressure for both hyper- as well as hypo-osmotic stress. Thus, by iteratively combining mathematical modeling with experimentation we achieved a better understanding of regulatory mechanisms of yeast osmo-homeostasis and formulated new hypotheses about osmo-sensing.


Assuntos
Adaptação Fisiológica , Parede Celular/metabolismo , Glicerol/metabolismo , Homeostase/fisiologia , Pressão Osmótica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Estresse Fisiológico
19.
Gene ; 352: 109-17, 2005 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-15935576

RESUMO

Most endosymbiotic bacteria have extremely reduced genomes, accelerated evolutionary rates, and strong AT base compositional bias thought to reflect reduced efficacy of selection and increased mutational pressure. Here, we present a comparative study of evolutionary forces shaping five fully sequenced bacterial endosymbionts of insects. The results of this study were three-fold: (i) Stronger conservation of high expression genes at not just nonsynonymous, but also synonymous, sites. (ii) Variation in amino acid usage strongly correlates with GC content and expression level of genes. This pattern is largely explained by greater conservation of high expression genes, leading to their higher GC content. However, we also found indication of selection favoring GC-rich amino acids that contrasts with former studies. (iii) Although the specific nutritional requirements of the insect host are known to affect gene content of endosymbionts, we found no detectable influence on substitution rates, amino acid usage, or codon usage of bacterial genes involved in host nutrition.


Assuntos
Aminoácidos/genética , Bactérias/genética , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Sequência Rica em At/genética , Substituição de Aminoácidos/genética , Animais , Proteínas de Bactérias/genética , Buchnera/genética , Códon/genética , Bases de Dados de Ácidos Nucleicos , Sequência Rica em GC/genética , Insetos/microbiologia , Mutação , Especificidade da Espécie , Simbiose , Wigglesworthia/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa