Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(33): e2300343120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37566635

RESUMO

Dendritic cells (DCs) are major regulators of innate and adaptive immune responses. DCs can be classified into plasmacytoid DCs and conventional DCs (cDCs) type 1 and 2. Murine and human cDC1 share the mRNA expression of XCR1. Murine studies indicated a specific role of the XCR1-XCL1 axis in the induction of immune responses. Here, we describe that human cDC1 can be distinguished into XCR1- and XCR1+ cDC1 in lymphoid as well as nonlymphoid tissues. Steady-state XCR1+ cDC1 display a preactivated phenotype compared to XCR1- cDC1. Upon stimulation, XCR1+ cDC1, but not XCR1- cDC1, secreted high levels of inflammatory cytokines as well as chemokines. This was associated with enhanced activation of NK cells mediated by XCR1+ cDC1. Moreover, XCR1+ cDC1 excelled in inhibiting replication of Influenza A virus. Further, under DC differentiation conditions, XCR1- cDC1 developed into XCR1+ cDC1. After acquisition of XCR1 expression, XCR1- cDC1 secreted comparable level of inflammatory cytokines. Thus, XCR1 is a marker of terminally differentiated cDC1 that licenses the antiviral effector functions of human cDC1, while XCR1- cDC1 seem to represent a late immediate precursor of cDC1.


Assuntos
Células Dendríticas , Células Matadoras Naturais , Humanos , Diferenciação Celular , Citocinas
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731892

RESUMO

With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.


Assuntos
Antígenos de Neoplasias , Epitopos , Imunoterapia , Neoplasias , Humanos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/genética , Imunoterapia/métodos , Epitopos/imunologia , Epitopos/genética , Exoma/genética , Mutação
3.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768665

RESUMO

The development of chimeric antigen receptor T cells (CAR-T cells) has marked a new era in cancer immunotherapy. Based on a multitude of durable complete remissions in patients with hematological malignancies, FDA and EMA approval was issued to several CAR products targeting lymphoid leukemias and lymphomas. Nevertheless, about 50% of patients treated with these approved CAR products experience relapse or refractory disease necessitating salvage strategies. Moreover, in the vast majority of patients suffering from solid tumors, CAR-T-cell infusions could not induce durable complete remissions so far. Crucial obstacles to CAR-T-cell therapy resulting in a priori CAR-T-cell refractory disease or relapse after initially successful CAR-T-cell therapy encompass antigen shutdown and CAR-T-cell dysfunctionality. Antigen shutdown predominately rationalizes disease relapse in hematological malignancies, and CAR-T-cell dysfunctionality is characterized by insufficient CAR-T-cell proliferation and cytotoxicity frequently observed in patients with solid tumors. Thus, strategies to surmount those obstacles are being developed with high urgency. In this review, we want to highlight different approaches to combine CAR-T cells with drugs, such as small molecules and antibodies, to pharmacologically boost CAR-T-cell therapy. In particular, we discuss how certain drugs may help to counteract antigen shutdown and CAR-T-cell dysfunctionality in both hematological malignancies and solid tumors.


Assuntos
Neoplasias Hematológicas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Imunoterapia Adotiva/métodos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/etiologia , Terapia Baseada em Transplante de Células e Tecidos
4.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955729

RESUMO

Programmed Cell Death 1 Ligand 1 (PD-L1, CD274, B7-H1) is a transmembrane protein which is strongly involved in immune modulation, serving as checkpoint regulator. Interaction with its receptor, Programmed Cell Death Protein 1 (PD-1), induces an immune-suppressive signal, which modulates the activity of T cells and other effector cells. This mediates peripheral tolerance and contributes to tumor immune escape. PD-L1 became famous due to its deployment in cancer therapy, where blockage of PD-L1 with the help of therapeutic antagonistic antibodies achieved impressive clinical responses by reactivating effector cell functions against tumor cells. Therefore, in the past, the focus has been placed on PD-L1 expression and its function in various malignant cells, whereas its role in healthy tissue and diseases apart from cancer remained largely neglected. In this review, we summarize the function of PD-L1 in non-cancerous cells, outlining its discovery and origin, as well as its involvement in different cellular and immune-related processes. We provide an overview of transcriptional and translational regulation, and expression patterns of PD-L1 in different cells and organs, and illuminate the involvement of PD-L1 in different autoimmune diseases as well as in the context of transplantation and pregnancy.


Assuntos
Doenças do Sistema Imunitário , Neoplasias , Antígeno B7-H1/metabolismo , Feminino , Humanos , Neoplasias/tratamento farmacológico , Gravidez , Linfócitos T/metabolismo , Evasão Tumoral
5.
Eur J Epidemiol ; 36(6): 649-654, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34275020

RESUMO

The Rotterdam Study is an ongoing prospective, population-based cohort study that started in 1989 in the city of Rotterdam, the Netherlands. The study aims to unravel etiology, preclinical course, natural history and potential targets for intervention for chronic diseases in mid-life and late-life. It focuses on cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. In response to the COVID-19 pandemic, a substudy was designed and embedded within the Rotterdam Study. On the 20th of April, 2020, all living non-institutionalized participants of the Rotterdam Study (n = 8732) were invited to participate in this sub-study by filling out a series of questionnaires administered over a period of 8 months. These questionnaires included questions on COVID-19 related symptoms and risk factors, characterization of lifestyle and mental health changes, and determination of health care seeking and health care avoiding behavior during the pandemic. As of May 2021, the questionnaire had been sent out repeatedly for a total of six times with an overall response rate of 76%. This article provides an overview of the rationale, design, and implementation of this sub-study nested within the Rotterdam Study. Finally, initial results on participant characteristics and prevalence of COVID-19 in this community-dwelling population are shown.


Assuntos
COVID-19/epidemiologia , Projetos de Pesquisa Epidemiológica , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Pandemias , Vigilância da População , Prevalência , Estudos Prospectivos , SARS-CoV-2 , Inquéritos e Questionários
6.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445385

RESUMO

Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer with rising incidence and high mortality. Approximately 80% of the cases are caused by the human Merkel cell polyomavirus, while the remaining 20% are induced by UV light leading to mutations. The standard treatment of metastatic MCC is the use of anti-PD-1/-PD-L1-immune checkpoint inhibitors (ICI) such as Pembrolizumab or Avelumab, which in comparison with conventional chemotherapy show better overall response rates and longer duration of responses in patients. Nevertheless, 50% of the patients do not respond or develop ICI-induced, immune-related adverse events (irAEs), due to diverse mechanisms, such as down-regulation of MHC complexes or the induction of anti-inflammatory cytokines. Other immunotherapeutic options such as cytokines and pro-inflammatory agents or the use of therapeutic vaccination offer great ameliorations to ICI. Cytotoxic T-cells play a major role in the effectiveness of ICI, and tumour-infiltrating CD8+ T-cells and their phenotype contribute to the clinical outcome. This literature review presents a summary of current and future checkpoint inhibitor therapies in MCC and demonstrates alternative therapeutic options. Moreover, the importance of T-cell responses and their beneficial role in MCC treatment is discussed.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Carcinoma de Célula de Merkel/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Carcinoma de Célula de Merkel/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias Cutâneas/imunologia , Microambiente Tumoral
7.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769379

RESUMO

BRAF and MEK inhibitor (BRAFi/MEKi) combinations are currently the standard treatment for patients with BRAFV600 mutant metastatic melanoma. Since the RAS/RAF/MEK/ERK-pathway is crucial for the function of different immune cells, we postulated an effect on their function and thus interference with anti-tumor immunity. Therefore, we examined the influence of BRAFi/MEKi, either as single agent or in combination, on the maturation of monocyte-derived dendritic cells (moDCs) and their interaction with T cells. DCs matured in the presence of vemurafenib or vemurafenib/cobimetinib altered their cytokine secretion and surface marker expression profile. Upon the antigen-specific stimulation of CD8+ and CD4+ T cells with these DCs or with T2.A1 cells in the presence of BRAFi/MEKi, we detected a lower expression of activation markers on and a lower cytokine secretion by these T cells. However, treatment with any of the inhibitors alone or in combination did not change the avidity of CD8+ T cells in peptide titration assays with T2.A1 cells. T-helper cell/DC interaction is a bi-directional process that normally results in DC activation. Vemurafenib and vemurafenib/cobimetinib completely abolished the helper T-cell-mediated upregulation of CD70, CD80, and CD86 but not CD25 on the DCs. The combination of dabrafenib/trametinib affected DC maturation and activation as well as T-cell activation less than combined vemurafenib/cobimetinib did. Hence, for a potential combination with immunotherapy, our data indicate the superiority of dabrafenib/trametinib treatment.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Apoptose , Azetidinas/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Humanos , Imidazóis/farmacologia , Oximas/farmacologia , Piperidinas/farmacologia , Piridonas/farmacologia , Pirimidinonas/farmacologia
8.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638566

RESUMO

Natural killer (NK) cells, members of the innate immune system, play an important role in the rejection of HLA class I negative tumor cells. Hence, a therapeutic vaccine, which can activate NK cells in addition to cells of the adaptive immune system might induce a more comprehensive cellular response, which could lead to increased tumor elimination. Dendritic cells (DCs) are capable of activating and expanding NK cells, especially when the NFκB pathway is activated in the DCs thereby leading to the secretion of the cytokine IL-12. Another prominent NK cell activator is IL-15, which can be bound by the IL-15 receptor alpha-chain (IL-15Rα) to be transpresented to the NK cells. However, monocyte-derived DCs do neither secrete IL-15, nor express the IL-15Rα. Hence, we designed a chimeric protein consisting of IL-15 and the IL-15Rα. Upon mRNA electroporation, the fusion protein was detectable on the surface of the DCs, and increased the potential of NFκB-activated, IL-12-producing DC to activate NK cells in an autologous cell culture system with ex vivo-generated cells from healthy donors. These data show that a chimeric IL-15/IL-15Rα molecule can be expressed by monocyte-derived DCs, is trafficked to the cell surface, and is functional regarding the activation of NK cells. These data represent an initial proof-of-concept for an additional possibility of further improving cellular DC-based immunotherapies of cancer.


Assuntos
Células Dendríticas/imunologia , Interleucina-15/biossíntese , Células Matadoras Naturais/imunologia , Receptores de Interleucina-15/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Células Dendríticas/efeitos dos fármacos , Eletroporação , Humanos , Quinase I-kappa B/biossíntese , Quinase I-kappa B/genética , Imunoterapia , Interleucina-15/química , Interleucina-15/genética , Células Matadoras Naturais/efeitos dos fármacos , Leucócitos Mononucleares , NF-kappa B/farmacologia , Cultura Primária de Células , Receptores de Interleucina-15/química , Receptores de Interleucina-15/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
9.
BMC Med ; 18(1): 263, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32967688

RESUMO

BACKGROUND: Evidence has pointed towards differences in the burden of arteriosclerosis according to its location and sex. Yet there is a scarcity of population-based data on aggregated sex-specific cardiovascular risk profiles, instead of single risk factors, and mortality risk according to the location of arteriosclerosis. We assessed sex-specific cardiovascular risk profiles and mortality risk associated with arteriosclerosis. METHODS: From the population-based Rotterdam Study, 2357 participants (mean age 69 years, 53% women) underwent non-contrast computed tomography to quantify calcification, as a proxy for arteriosclerosis, in the coronary arteries (CAC), aortic arch (AAC), extracranial (ECAC) and intracranial carotid arteries (ICAC), vertebrobasilar arteries (VBAC), and aortic valve (AVC). Principal component analysis (PCA) of eight distinct cardiovascular risk factors was performed, separately for women and men, to derive risk profiles based on the shared variance between factors. We used sex-stratified multivariable logistic regression to examine the associations between PCA-derived risk profiles and severe calcification at different locations. We investigated the associations of severe calcification with mortality risk using sex-stratified multivariable Cox regression. RESULTS: PCA identified three cardiovascular risk profiles in both sexes: (1) anthropometry, glucose, and HDL cholesterol; (2) blood pressure; and (3) smoking and total cholesterol. In women, the strongest associations were found for profile 2 with severe ECAC and ICAC (adjusted OR [95% CI] 1.32 [1.14-1.53]) and for profile 3 with severe at all locations, except AVC. In men, the strongest associations were found for profile 2 with VBAC (1.31 [1.12-1.52]) and profile 3 with severe AAC (1.28 [1.09-1.51]). ECAC and AVC in women and CAC in men showed the strongest, independent associations with cardiovascular mortality (HR [95% CI] 2.11 [1.22-3.66], 2.05 [1.21-3.49], 2.24 [1.21-3.78], respectively). CONCLUSIONS: Our findings further underline the existence of sex- and location-specific differences in the etiology and consequences of arteriosclerosis. Future research should unravel which distinct pathological processes underlie differences in risk profiles for arteriosclerosis.


Assuntos
Arteriosclerose/epidemiologia , Doenças Cardiovasculares/epidemiologia , Doença da Artéria Coronariana/epidemiologia , Fatores de Risco de Doenças Cardíacas , Idoso , Arteriosclerose/mortalidade , Doenças Cardiovasculares/mortalidade , Doença da Artéria Coronariana/mortalidade , Feminino , Humanos , Masculino , Fatores de Risco , Fatores Sexuais , Análise de Sobrevida
10.
Eur J Epidemiol ; 35(5): 411-429, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32076944

RESUMO

Evidence for associations between long-term protein intake with mortality is not consistent. We aimed to examine associations of dietary protein from different sources with all-cause and cause-specific mortality. We followed 7786 participants from three sub-cohorts of the Rotterdam Study, a population-based cohort in the Netherlands. Dietary data were collected using food-frequency questionnaires at baseline (1989-1993, 2000-2001, 2006-2008). Deaths were followed until 2018. Associations were examined using Cox regression. Additionally, we performed a highest versus lowest meta-analysis and a dose-response meta-analysis to summarize results from the Rotterdam Study and previous prospective cohorts. During a median follow-up of 13.0 years, 3589 deaths were documented in the Rotterdam Study. In this cohort, after multivariable adjustment, higher total protein intake was associated with higher all-cause mortality [e.g. highest versus lowest quartile of total protein intake as percentage of energy (Q4 versus Q1), HR = 1.12 (1.01, 1.25)]; mainly explained by higher animal protein intake and CVD mortality [Q4 versus Q1, CVD mortality: 1.28 (1.03, 1.60)]. The association of animal protein intake and CVD was mainly contributed to by protein from meat and dairy. Total plant protein intake was not associated with all-cause or cause-specific mortality, mainly explained by null associations for protein from grains and potatoes; but higher intake of protein from legumes, nuts, vegetables, and fruits was associated with lower risk of all-cause and cause-specific mortality. Findings for total and animal protein intake were corroborated in a meta-analysis of eleven prospective cohort studies including the Rotterdam Study (total 64,306 deaths among 350,452 participants): higher total protein intake was associated with higher all-cause mortality [pooled RR for highest versus lowest quantile 1.05 (1.01, 1.10)]; and for dose-response per 5 energy percent (E%) increment, 1.02 (1.004, 1.04); again mainly driven by an association between animal protein and CVD mortality [highest versus lowest, 1.09 (1.01, 1.18); per 5 E% increment, 1.05 (1.02, 1.09)]. Furthermore, in the meta-analysis a higher plant protein intake was associated with lower all-cause and CVD mortality [e.g. for all-cause mortality, highest versus lowest, 0.93 (0.87, 0.99); per 5 E% increment, 0.87 (0.78, 0.98), for CVD mortality, highest versus lowest 0.86 (0.73, 1.00)]. Evidence from prospective cohort studies to date suggests that total protein intake is positively associated with all-cause mortality, mainly driven by a harmful association of animal protein with CVD mortality. Plant protein intake is inversely associated with all-cause and CVD mortality. Our findings support current dietary recommendations to increase intake of plant protein in place of animal protein.Clinical trial registry number and website NTR6831, https://www.trialregister.nl/trial/6645.


Assuntos
Dieta , Proteínas Alimentares/administração & dosagem , Mortalidade , Proteínas de Plantas/administração & dosagem , Idoso , Doenças Cardiovasculares/mortalidade , Causas de Morte , Estudos de Coortes , Feminino , Inquéritos Epidemiológicos , Humanos , Masculino , Carne , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Estado Nutricional , Estudos Prospectivos , Fatores de Risco
11.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429316

RESUMO

When optimizing chimeric antigen receptor (CAR) therapy in terms of efficacy, safety, and broadening its application to new malignancies, there are two main clusters of topics to be addressed: the CAR design and the choice of transfected cells. The former focuses on the CAR construct itself. The utilized transmembrane and intracellular domains determine the signaling pathways induced by antigen binding and thereby the cell-specific effector functions triggered. The main part of this review summarizes our understanding of common signaling domains employed in CARs, their interactions among another, and their effects on different cell types. It will, moreover, highlight several less common extracellular and intracellular domains that might permit unique new opportunities. Different antibody-based extracellular antigen-binding domains have been pursued and optimized to strike a balance between specificity, affinity, and toxicity, but these have been reviewed elsewhere. The second cluster of topics is about the cellular vessels expressing the CAR. It is essential to understand the specific attributes of each cell type influencing anti-tumor efficacy, persistence, and safety, and how CAR cells crosstalk with each other and bystander cells. The first part of this review focuses on the progress achieved in adopting different leukocytes for CAR therapy.


Assuntos
Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Ensaios Clínicos como Assunto , Humanos , Domínios Proteicos , Receptores de Antígenos Quiméricos/química
12.
Eur J Epidemiol ; 34(9): 853-861, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31399939

RESUMO

Intake of individual antioxidants has been related to a lower risk of type 2 diabetes. However, the overall diet may contain many antioxidants with additive or synergistic effects. Therefore, we aimed to determine associations between total dietary antioxidant capacity and risk of type 2 diabetes, prediabetes and insulin resistance. We estimated the dietary antioxidant capacity for 5796 participants of the Rotterdam Study using a ferric reducing ability of plasma (FRAP) score. Of these participants, 4957 had normoglycaemia and 839 had prediabetes at baseline. We used covariate-adjusted proportional hazards models to estimate associations between FRAP and risk of type 2 diabetes, risk of type 2 diabetes among participants with prediabetes, and risk of prediabetes. We used linear regression models to determine the association between FRAP score and insulin resistance (HOMA-IR). We observed 532 cases of incident type 2 diabetes, of which 259 among participants with prediabetes, and 794 cases of incident prediabetes during up to 15 years of follow-up. A higher FRAP score was associated with a lower risk of type 2 diabetes among the total population (HR per SD FRAP 0.84, 95% CI 0.75; 0.95) and among participants with prediabetes (HR 0.85, 95% CI 0.73; 0.99), but was not associated with risk of prediabetes. Dietary FRAP was also inversely associated with HOMA-IR (ß - 0.04, 95% CI - 0.06; - 0.03). Effect estimates were generally similar between sexes. The findings of this population-based study emphasize the putative beneficial effects of a diet rich in antioxidants on insulin resistance and risk of type 2 diabetes.


Assuntos
Antioxidantes/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Resistência à Insulina , Avaliação Nutricional , Estado Pré-Diabético/metabolismo , Adulto , Idoso , Antioxidantes/administração & dosagem , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Frutas , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Estado Pré-Diabético/sangue , Estado Pré-Diabético/epidemiologia , Fatores de Risco
13.
Int J Mol Sci ; 20(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779130

RESUMO

Targeting cancer cells using chimeric-antigen-receptor (CAR-)T cells has propelled adoptive T-cell therapy (ATT) to the next level. A plentitude of durable complete responses using CD19-specific CAR-T cells in patients suffering from various lymphoid malignancies resulted in the approval by the food and drug administration (FDA) of CD19-directed CAR-T cells for the treatment of acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). A substantial portion of this success in hematological malignancies can be traced back to the beneficial properties of the target antigen CD19, which combines a universal presence on target cells with no detectable expression on indispensable host cells. Hence, to replicate response rates achieved in ALL and DLBCL in the realm of solid tumors, where ideal target antigens are scant and CAR-T cells are still lagging behind expectations, the quest for appropriate target antigens represents a crucial task to expedite the next steps in the evolution of CAR-T-cell therapy. In this review, we want to highlight the potential of chondroitin sulfate proteoglycan 4 (CSPG4) as a CAR-target antigen for a variety of different cancer entities. In particular, we discuss merits and challenges associated with CSPG4-CAR-T cells for the ATT of melanoma, leukemia, glioblastoma, and triple-negative breast cancer.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/imunologia , Imunoterapia Adotiva/métodos , Proteínas de Membrana/imunologia , Neoplasias/terapia , Ensaios Clínicos como Assunto , Humanos , Neoplasias/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Resultado do Tratamento
14.
Int J Mol Sci ; 20(11)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195686

RESUMO

The advent of CD19-specific chimeric antigen receptor (CAR) T cells has proven to be a powerful asset in the arsenal of cancer immunotherapy of acute lymphoblastic leukemia and certain B cell lymphomas. However, a sizable portion of patients treated with CD19-CAR T cells relapse with CD19-negative cancer cells, necessitating the quest for back-up antigens. Chondroitin sulfate proteoglycan 4 (CSPG4) expression has been reported on leukemic blasts bearing the ill-fated MLL 11q23 rearrangement. We aimed at exploring the use of CSPG4-specific CAR T cells against mixed-lineage leukemia (MLL)-rearranged leukemic blasts, using the precursor B cell leukemia cell line KOPN8 (MLL-MLLT1 translocation) as a model. First, we confirmed CSPG4 expression on KOPN8 cells. Bulk T cells electroporated with mRNA encoding a CSPG4-specific CAR upregulated activation markers and secreted the Th1 cytokines TNF and IFNγ in an antigen-specific manner upon co-culture with KOPN8 cells. More importantly, CSPG4-specific CAR T cells evinced specific degranulation towards KOPN8 cells and specifically lysed KOPN8 target cells in chromium lysis experiments. CSPG4 is a well-established CAR target in cutaneous melanoma. Here, we provide proof-of-principle data for the use of CSPG4-specific CAR T cells against MLL-translocated leukemias.


Assuntos
Antígenos/metabolismo , Imunoterapia Adotiva , Leucemia de Células B/imunologia , Leucemia de Células B/terapia , Células Precursoras de Linfócitos B/patologia , Proteoglicanas/metabolismo , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Criança , Citocinas/metabolismo , Humanos , Células Th1/imunologia
15.
Biol Blood Marrow Transplant ; 24(8): 1685-1691, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29753163

RESUMO

Biomarkers measured in blood chemistry before allogeneic hematopoietic stem cell transplantation (HSCT) may reflect patients' physiological status. We hypothesized that selected markers are predictive for nonrelapse mortality (NRM) following transplantation and could contribute to risk assessment. We investigated the value of pre-HSCT albumin, estimated glomerular filtration rate (eGFR), and alkaline phosphatase (AlkP) in predicting NRM. We retrospectively analyzed clinical and laboratory data from 1217 patients receiving a first HSCT in 2 European centers between 2003 and 2015. Transplantation indications and conditioning regimens were diverse. Patients had a median age of 55 years and hematopoietic cell transplantation comorbidity index (HCT-CI) scores of 0 (24%), 1 to 2 (39%), and ≥3 (37%). Cutoffs of eGFR <60 mL/min, albumin <3.5 g/dL, and AlkP >180 IU/L corresponded with 8.8%, 8.3%, and 6.5% of the patients, respectively. eGFR and albumin were associated with increased risk and higher cumulative incidence of day-100, 1-year, and 2-year NRM, both as continuous or categorized variables. A similar pattern was observed for AlkP, except for day-100 NRM. In multivariable analyses, eGFR and albumin were consistently among the top risk factors for early and late-term NRM, abrogating the role of age. Prediction models for day-100, 1-year, and 2-year NRM based only on HCT-CI resulted in c-statistics of .565, .575, and .577, respectively. Addition of both biomarkers increased c-statistics for day-100, 1-year, and 2-year NRM to .651, .633, and .624, respectively. Albumin and eGFR are prognostic biomarkers for NRM after HSCT and improve the discriminative power of the HCT-CI.


Assuntos
Albuminas/análise , Fosfatase Alcalina/sangue , Taxa de Filtração Glomerular/fisiologia , Transplante de Células-Tronco Hematopoéticas/mortalidade , Medição de Risco , Adulto , Idoso , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida , Transplante Homólogo/mortalidade
16.
Exp Dermatol ; 27(7): 769-778, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29704887

RESUMO

Chimeric antigen receptor (CAR)-T cells have been used successfully for cancer immunotherapy. While substantial tumor regression was observed in leukaemia and lymphoma, CAR therapy of solid tumors needs further improvement. A major obstacle to the efficiency of engineered T cells is posed by triggering of inhibitory receptors, for example programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), leading to an impaired antitumor activity. To boost CAR-T-cell function, we co-electroporated T cells with both, mRNA encoding a CAR specific for chondroitin sulphate proteoglycan 4 (CSPG4) and small-interfering RNAs (siRNAs) to downregulate PD-1 (siPD-1) and CTLA-4 (siCTLA-4). Flow cytometry revealed that activation-induced upregulation of both PD-1 and CTLA-4 was suppressed when compared to CAR-T cells electroporated with negative control siRNA. The siRNA transfection showed no influence on CAR expression of engineered T cells. Functionality assays were performed using PD-L1- and CD80-transfected melanoma cells endogenously expressing CSPG4. CAR-T cells transfected with siPD-1 alone showed improvement in cytokine secretion. Additionally, CAR-T cells transfected with either siPD-1 alone or together with siCTLA-4 exhibited a significantly increased cytotoxicity. No or only little effects were observed when CAR-T cells were co-transfected with siCTLA-4 only. Taken together, it is feasible to optimize CAR-T cells by co-transfection of CAR-encoding mRNA and siRNAs to downregulate inhibitory receptors. Our in vitro data indicate an improvement of the functionality of these CAR-T cells, suggesting that this strategy could represent a novel method to enhance CAR-T-cell immunotherapy of cancer.


Assuntos
Antígeno CTLA-4/antagonistas & inibidores , Imunoterapia Adotiva/métodos , Melanoma/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/terapia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/genética , Citocinas/metabolismo , Citotoxicidade Imunológica , Regulação para Baixo , Eletroporação , Humanos , Melanoma/genética , Melanoma/imunologia , Receptor de Morte Celular Programada 1/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Transfecção
17.
Eur J Epidemiol ; 33(9): 883-893, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948369

RESUMO

Vegan or vegetarian diets have been suggested to reduce type 2 diabetes (T2D) risk. However, not much is known on whether variation in the degree of having a plant-based versus animal-based diet may be beneficial for prevention of T2D. We aimed to investigate whether level of adherence to a diet high in plant-based foods and low in animal-based foods is associated with insulin resistance, prediabetes, and T2D. Our analysis included 6798 participants (62.7 ± 7.8 years) from the Rotterdam Study (RS), a prospective population-based cohort in the Netherlands. Dietary intake data were collected with food-frequency questionnaires at baseline of three sub-cohorts of RS (RS-I-1: 1989-1993, RS-II-1: 2000-2001, RS-III-1: 2006-2008). We constructed a continuous plant-based dietary index (range 0-92) assessing adherence to a plant-based versus animal-based diet. Insulin resistance at baseline and follow-up was assessed using homeostasis model assessment of insulin resistance (HOMA-IR). Prediabetes and T2D were collected from general practitioners' records, pharmacies' databases, and follow-up examinations in our research center until 2012. We used multivariable linear mixed models to examine association of the index with longitudinal HOMA-IR, and multivariable Cox proportional-hazards regression models to examine associations of the index with risk of prediabetes and T2D. During median 5.7, and 7.3 years of follow-up, we documented 928 prediabetes cases and 642 T2D cases. After adjusting for sociodemographic and lifestyle factors, a higher score on the plant-based dietary index was associated with lower insulin resistance (per 10 units higher score: ß = -0.09; 95% CI: - 0.10; - 0.08), lower prediabetes risk (HR = 0.89; 95% CI: 0.81; 0.98), and lower T2D risk [HR = 0.82 (0.73; 0.92)]. After additional adjustment for BMI, associations attenuated and remained statistically significant for longitudinal insulin resistance [ß = -0.05 (- 0.06; - 0.04)] and T2D risk [HR = 0.87 (0.79; 0.99)], but no longer for prediabetes risk [HR = 0.93 (0.85; 1.03)]. In conclusion, a more plant-based and less animal-based diet may lower risk of insulin resistance, prediabetes and T2D. These findings strengthen recent dietary recommendations to adopt a more plant-based diet.Clinical Trial Registry number and website NTR6831, http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6831 .


Assuntos
Diabetes Mellitus Tipo 2/prevenção & controle , Dieta Vegetariana , Resistência à Insulina , Insulina/sangue , Carne , Estado Pré-Diabético/prevenção & controle , Idoso , Animais , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Dieta , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Estado Pré-Diabético/sangue , Estado Pré-Diabético/epidemiologia , Estudos Prospectivos
18.
Int J Mol Sci ; 19(1)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29346301

RESUMO

BRAF and MEK inhibitors (BRAFi/MEKi), the standard treatment for patients with BRAFV600 mutated melanoma, are currently explored in combination with various immunotherapies, notably checkpoint inhibitors and adoptive transfer of receptor-transfected T cells. Since two BRAFi/MEKi combinations with similar efficacy are approved, potential differences in their effects on immune cells would enable a rational choice for triple therapies. Therefore, we characterized the influence of the clinically approved BRAFi/MEKi combinations dabrafenib (Dabra) and trametinib (Tram) vs. vemurafenib (Vem) and cobimetinib (Cobi) on the activation and functionality of chimeric antigen receptor (CAR)-transfected T cells. We co-cultured CAR-transfected CD8⁺ T cells and target cells with clinically relevant concentrations of the inhibitors and determined the antigen-induced cytokine secretion. All BRAFi/MEKi reduced this release as single agents, with Dabra having the mildest inhibitory effect, and Dabra + Tram having a clearly milder inhibitory effect than Vem + Cobi. A similar picture was observed for the upregulation of the activation markers CD25 and CD69 on CAR-transfected T cells after antigen-specific stimulation. Most importantly, the cytolytic capacity of the CAR-T cells was significantly inhibited by Cobi and Vem + Cobi, whereas the other kinase inhibitors showed no effect. Therefore, the combination Dabra + Tram would be more suitable for combining with T-cell-based immunotherapy than Vem + Cobi.


Assuntos
Reprogramação Celular/efeitos dos fármacos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos , Proteoglicanas de Sulfatos de Condroitina/genética , Citocinas/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , Melanoma/terapia , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
Proteomics ; 17(21)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28921918

RESUMO

The histamine receptors (HRs) represent a subclass of G protein-coupled receptors (GPCRs) and comprise four subtypes. Due to their numerous physiological and pathological effects, HRs are popular drug targets for the treatment of allergic reactions or the regulation of gastric acid secretion. Hence, an understanding of the functional selectivity of HR ligands has gained importance. These ligands can bind to specific GPCRs and selectively activate defined pathways. Supporting the activation of a therapeutically necessary pathway without the activation of other signaling cascades can result in drugs with more specific activity and fewer side effects. To evaluate the cellular consequences resulting from receptor binding, comprehensive analyses of cellular protein alterations upon incubation with ligands are required. For this purpose, endothelial cells are treated with histamine, as the endogenous ligand of HRs, to obtain a global overview of its cellular effects. Quantitative proteomics and pathway analyses of histamine-treated and untreated cells reveal enrichment of the nuclear factor-κB and tumor necrosis factor signaling pathways, cytokine-cytokine receptor interactions, complement and coagulation cascades, and acute inflammatory processes upon histamine treatment. This strategy offers the opportunity to monitor HR-mediated signaling in a multidimensional manner.


Assuntos
Biologia Computacional/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Histamina/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteômica/métodos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Ligantes , Transdução de Sinais/efeitos dos fármacos
20.
BMC Cancer ; 17(1): 551, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28818060

RESUMO

BACKGROUND: Adoptive T-cell therapy relying on conventional T cells transduced with T-cell receptors (TCRs) or chimeric antigen receptors (CARs) has caused substantial tumor regression in several clinical trials. However, genetically engineered T cells have been associated with serious side-effects due to off-target toxicities and massive cytokine release. To obviate these concerns, we established a protocol adaptable to GMP to expand and transiently transfect γ/δ T cells with mRNA. METHODS: PBMC from healthy donors were stimulated using zoledronic-acid or OKT3 to expand γ/δ T cells and bulk T cells, respectively. Additionally, CD8+ T cells and γ/δ T cells were MACS-isolated from PBMC and expanded with OKT3. Next, these four populations were electroporated with RNA encoding a gp100/HLA-A2-specific TCR or a CAR specific for MCSP. Thereafter, receptor expression, antigen-specific cytokine secretion, specific cytotoxicity, and killing of the endogenous γ/δ T cell-target Daudi were analyzed. RESULTS: Using zoledronic-acid in average 6 million of γ/δ T cells with a purity of 85% were generated from one million PBMC. MACS-isolation and OKT3-mediated expansion of γ/δ T cells yielded approximately ten times less cells. OKT3-expanded and CD8+ MACS-isolated conventional T cells behaved correspondingly similar. All employed T cells were efficiently transfected with the TCR or the CAR. Upon respective stimulation, γ/δ T cells produced IFNγ and TNF, but little IL-2 and the zoledronic-acid expanded T cells exceeded MACS-γ/δ T cells in antigen-specific cytokine secretion. While the cytokine production of γ/δ T cells was in general lower than that of conventional T cells, specific cytotoxicity against melanoma cell lines was similar. In contrast to OKT3-expanded and MACS-CD8+ T cells, mock-electroporated γ/δ T cells also lysed tumor cells reflecting the γ/δ T cell-intrinsic anti-tumor activity. After transfection, γ/δ T cells were still able to kill MHC-deficient Daudi cells. CONCLUSION: We present a protocol adaptable to GMP for the expansion of γ/δ T cells and their subsequent RNA-transfection with tumor-specific TCRs or CARs. Given the transient receptor expression, the reduced cytokine release, and the equivalent cytotoxicity, these γ/δ T cells may represent a safer complementation to genetically engineered conventional T cells in the immunotherapy of melanoma (Exper Dermatol 26: 157, 2017, J Investig Dermatol 136: A173, 2016).


Assuntos
RNA , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Adulto , Técnicas de Cultura de Células , Citocinas/metabolismo , Citotoxicidade Imunológica , Eletroporação , Engenharia Genética , Antígeno HLA-A2/imunologia , Voluntários Saudáveis , Humanos , Separação Imunomagnética , Imunofenotipagem , Imunoterapia Adotiva , Melanoma/genética , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/terapia , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T , Transfecção , Adulto Jovem , Antígeno gp100 de Melanoma/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa