Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Nat Chem Biol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773330

RESUMO

The C-terminal to LisH (CTLH) complex is a ubiquitin ligase complex that recognizes substrates with Pro/N-degrons via its substrate receptor Glucose-Induced Degradation 4 (GID4), but its function and substrates in humans remain unclear. Here, we report PFI-7, a potent, selective and cell-active chemical probe that antagonizes Pro/N-degron binding to human GID4. Use of PFI-7 in proximity-dependent biotinylation and quantitative proteomics enabled the identification of GID4 interactors and GID4-regulated proteins. GID4 interactors are enriched for nucleolar proteins, including the Pro/N-degron-containing RNA helicases DDX21 and DDX50. We also identified a distinct subset of proteins whose cellular levels are regulated by GID4 including HMGCS1, a Pro/N-degron-containing metabolic enzyme. These data reveal human GID4 Pro/N-degron targets regulated through a combination of degradative and nondegradative functions. Going forward, PFI-7 will be a valuable research tool for investigating CTLH complex biology and facilitating development of targeted protein degradation strategies that highjack CTLH E3 ligase activity.

2.
Biochemistry ; 63(10): 1297-1306, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729622

RESUMO

The DNA damage binding protein 1 (DDB1) is an essential component of protein complexes involved in DNA damage repair and the ubiquitin-proteasome system (UPS) for protein degradation. As an adaptor protein specific to Cullin-RING E3 ligases, DDB1 binds different receptors that poise protein substrates for ubiquitination and subsequent degradation by the 26S proteasome. Examples of DDB1-binding protein receptors are Cereblon (CRBN) and the WD-repeat containing DDB1- and CUL4-associated factors (DCAFs). Cognate substrates of CRBN and DCAFs are involved in cancer-related cellular processes or are mimicked by viruses to reprogram E3 ligases for the ubiquitination of antiviral host factors. Thus, disrupting interactions of DDB1 with receptor proteins might be an effective strategy for anticancer and antiviral drug discovery. Here, we developed fluorescence polarization (FP)-based peptide displacement assays that utilize full-length DDB1 and fluorescein isothiocyanate (FITC)-labeled peptide probes derived from the specific binding motifs of DDB1 interactors. A general FP-based assay condition applicable to diverse peptide probes was determined and optimized. Mutagenesis and biophysical analyses were then employed to identify the most suitable peptide probe. The FITC-DCAF15 L49A peptide binds DDB1 with a dissociation constant of 68 nM and can be displaced competitively by unlabeled peptides at sub-µM to low nM concentrations. These peptide displacement assays can be used to screen small molecule libraries to identify novel modulators that could specifically antagonize DDB1 interactions toward development of antiviral and cancer therapeutics.


Assuntos
Proteínas de Ligação a DNA , Polarização de Fluorescência , Peptídeos , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/antagonistas & inibidores , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Polarização de Fluorescência/métodos , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
3.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782742

RESUMO

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Assuntos
Nucléolo Celular/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Sondas Moleculares/química , Domínios Proteicos , Proteínas Repressoras/metabolismo , Metilação , Mieloma Múltiplo/metabolismo , Nucleossomos/metabolismo
4.
J Chem Inf Model ; 64(13): 5344-5355, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38916159

RESUMO

We herewith applied a priori a generic hit identification method (POEM) for difficult targets of known three-dimensional structure, relying on the simple knowledge of physicochemical and topological properties of a user-selected cavity. Searching for local similarity to a set of fragment-bound protein microenvironments of known structure, a point cloud registration algorithm is first applied to align known subpockets to the target cavity. The resulting alignment then permits us to directly pose the corresponding seed fragments in a target cavity space not typically amenable to classical docking approaches. Last, linking potentially connectable atoms by a deep generative linker enables full ligand enumeration. When applied to the WD40 repeat (WDR) central cavity of leucine-rich repeat kinase 2 (LRRK2), an unprecedented binding site, POEM was able to quickly propose 94 potential hits, five of which were subsequently confirmed to bind in vitro to LRRK2-WDR.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Simulação de Acoplamento Molecular , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Sítios de Ligação , Domínios Proteicos , Humanos , Ligantes , Ligação Proteica , Repetições WD40 , Algoritmos
5.
J Chem Inf Model ; 63(13): 4070-4078, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37350740

RESUMO

DCAF1 functions as a substrate recruitment subunit for the RING-type CRL4DCAF1 and the HECT family EDVPDCAF1 E3 ubiquitin ligases. The WDR domain of DCAF1 serves as a binding platform for substrate proteins and is also targeted by HIV and SIV lentiviral adaptors to induce the ubiquitination and proteasomal degradation of antiviral host factors. It is therefore attractive both as a potential therapeutic target for the development of chemical inhibitors and as an E3 ligase that could be recruited by novel PROTACs for targeted protein degradation. In this study, we used a proteome-scale drug-target interaction prediction model, MatchMaker, combined with cheminformatics filtering and docking to identify ligands for the DCAF1 WDR domain. Biophysical screening and X-ray crystallographic studies of the predicted binders confirmed a selective ligand occupying the central cavity of the WDR domain. This study shows that artificial intelligence-enabled virtual screening methods can successfully be applied in the absence of previously known ligands.


Assuntos
Inteligência Artificial , Proteínas de Transporte , Ligantes , Proteínas de Transporte/química , Ubiquitina-Proteína Ligases/metabolismo , Aprendizado de Máquina
6.
J Proteome Res ; 20(8): 4212-4215, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34180678

RESUMO

In the absence of effective treatment, COVID-19 is likely to remain a global disease burden. Compounding this threat is the near certainty that novel coronaviruses with pandemic potential will emerge in years to come. Pan-coronavirus drugs-agents active against both SARS-CoV-2 and other coronaviruses-would address both threats. A strategy to develop such broad-spectrum inhibitors is to pharmacologically target binding sites on SARS-CoV-2 proteins that are highly conserved in other known coronaviruses, the assumption being that any selective pressure to keep a site conserved across past viruses will apply to future ones. Here we systematically mapped druggable binding pockets on the experimental structure of 15 SARS-CoV-2 proteins and analyzed their variation across 27 α- and ß-coronaviruses and across thousands of SARS-CoV-2 samples from COVID-19 patients. We find that the two most conserved druggable sites are a pocket overlapping the RNA binding site of the helicase nsp13 and the catalytic site of the RNA-dependent RNA polymerase nsp12, both components of the viral replication-transcription complex. We present the data on a public web portal (https://www.thesgc.org/SARSCoV2_pocketome/), where users can interactively navigate individual protein structures and view the genetic variability of drug-binding pockets in 3D.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Pandemias , RNA Polimerase Dependente de RNA/genética
8.
Bioinformatics ; 35(16): 2882-2884, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30601939

RESUMO

MOTIVATION: Protein ubiquitination plays a central role in important cellular machineries such as protein degradation or chromatin-mediated signaling. With the recent discovery of the first potent ubiquitin-specific protease inhibitors, and the maturation of proteolysis targeting chimeras as promising chemical tools to exploit the ubiquitin-proteasome system, protein target classes associated with ubiquitination pathways are becoming the focus of intense drug-discovery efforts. RESULTS: We have developed UbiHub, an online resource that can be used to visualize a diverse array of biological, structural and chemical data on phylogenetic trees of human protein families involved in ubiquitination signaling, including E3 ligases and deubiquitinases. This interface can inform target prioritization and drug design, and serves as a navigation tool for medicinal chemists, structural and cell biologists exploring ubiquitination pathways. AVAILABILITY AND IMPLEMENTATION: https://ubihub.thesgc.org.


Assuntos
Ubiquitinação , Humanos , Filogenia , Proteólise , Ubiquitina-Proteína Ligases
10.
Bioorg Med Chem ; 27(17): 3866-3878, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31327677

RESUMO

SET domain bifurcated protein 1 (SETDB1) is a human histone-lysine methyltransferase which is amplified in human cancers and was shown to be crucial in the growth of non-small and small cell lung carcinoma. In addition to its catalytic domain, SETDB1 harbors a unique tandem tudor domain which recognizes histone sequences containing both methylated and acetylated lysines, and likely contributes to its localization on chromatin. Using X-ray crystallography and NMR spectroscopy fragment screening approaches, we have identified the first small molecule fragment hits that bind to histone peptide binding groove of the Tandem Tudor Domain (TTD) of SETDB1. Herein, we describe the binding modes of these fragments and analogues and the biophysical characterization of key compounds. These confirmed small molecule fragments will inform the development of potent antagonists of SETDB1 interaction with histones.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Histona-Lisina N-Metiltransferase/isolamento & purificação , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/antagonistas & inibidores , Histonas/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Domínio Tudor/efeitos dos fármacos
11.
Molecules ; 24(24)2019 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-31817960

RESUMO

Protein methyltransferases (PMTs) are enzymes involved in epigenetic mechanisms, DNA repair, and other cellular machineries critical to cellular identity and function, and are an important target class in chemical biology and drug discovery. Central to the enzymatic reaction is the transfer of a methyl group from the cofactor S-adenosylmethionine (SAM) to a substrate protein. Here we review how the essentiality of SAM for catalysis is exploited by chemical inhibitors. Occupying the cofactor binding pocket to compete with SAM can be hindered by the hydrophilic nature of this site, but structural studies of compounds now in the clinic revealed that inhibitors could either occupy juxtaposed pockets to overlap minimally, but sufficiently with the bound cofactor, or induce large conformational remodeling leading to a more druggable binding site. Rather than competing with the cofactor, other inhibitors compete with the substrate and rely on bound SAM, either to allosterically stabilize the substrate binding site, or for direct SAM-inhibitor interactions.


Assuntos
Inibidores Enzimáticos/química , Epigênese Genética , Metiltransferases/química , S-Adenosilmetionina/química , Sítios de Ligação , Catálise , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Metiltransferases/antagonistas & inibidores , Modelos Moleculares , Domínios Proteicos/efeitos dos fármacos
12.
J Proteome Res ; 16(10): 3766-3773, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28956604

RESUMO

WD40 repeat (WDR) domains are protein interaction scaffolds that represent one of the largest protein families in human, and a first WDR inhibitor-an allosteric antagonist of polycomb repressive complex 2-just entered the clinic. A systematic analysis of the CORUM database of protein complexes shows that WDR is the most represented domain in transcriptional regulation and one of the most prevalent in the ubiquitin proteasome system, two pathways of high relevance to drug discovery. Parsing the literature and the vulnerability of cancer cell lines to CRISPR knockout indicates that WDR proteins are targets of interest in oncology and other disease areas. A quantitative analysis of WDR structures reveals that druggable binding pockets can be found on multiple surfaces of these multifaceted protein interaction platforms. These data support the development of chemical probes to further interrogate WDR proteins as an emerging therapeutic target class.


Assuntos
Antineoplásicos/química , Neoplasias/tratamento farmacológico , Complexo Repressor Polycomb 2/genética , Domínios Proteicos/genética , Repetições WD40/genética , Animais , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Neoplasias/genética , Complexo Repressor Polycomb 2/antagonistas & inibidores , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Ubiquitina/genética , Repetições WD40/efeitos dos fármacos
13.
J Biol Chem ; 291(26): 13509-19, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27129774

RESUMO

PR domain-containing protein 7 (PRDM7) is a primate-specific histone methyltransferase that is the result of a recent gene duplication of PRDM9. The two proteins are highly homologous, especially in the catalytic PR/SET domain, where they differ by only three amino acid residues. Here we report that PRDM7 is an efficient methyltransferase that selectively catalyzes the trimethylation of H3 lysine 4 (H3K4) both in vitro and in cells. Through selective mutagenesis we have dissected the functional roles of each of the three divergent residues between the PR domains of PRDM7 and PRDM9. These studies indicate that after a single serine to tyrosine mutation at residue 357 (S357Y), PRDM7 regains the substrate specificities and catalytic activities similar to its evolutionary predecessor, including the ability to efficiently methylate H3K36.


Assuntos
Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Substituição de Aminoácidos , Duplicação Gênica , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Metilação , Mutagênese , Mutação de Sentido Incorreto , Especificidade por Substrato
14.
Nat Chem Biol ; 11(8): 571-578, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26167872

RESUMO

The CEBPA gene is mutated in 9% of patients with acute myeloid leukemia (AML). Selective expression of a short (30-kDa) CCAAT-enhancer binding protein-α (C/EBPα) translational isoform, termed p30, represents the most common type of CEBPA mutation in AML. The molecular mechanisms underlying p30-mediated transformation remain incompletely understood. We show that C/EBPα p30, but not the normal p42 isoform, preferentially interacts with Wdr5, a key component of SET/MLL (SET-domain/mixed-lineage leukemia) histone-methyltransferase complexes. Accordingly, p30-bound genomic regions were enriched for MLL-dependent H3K4me3 marks. The p30-dependent increase in self-renewal and inhibition of myeloid differentiation required Wdr5, as downregulation of the latter inhibited proliferation and restored differentiation in p30-dependent AML models. OICR-9429 is a new small-molecule antagonist of the Wdr5-MLL interaction. This compound selectively inhibited proliferation and induced differentiation in p30-expressing human AML cells. Our data reveal the mechanism of p30-dependent transformation and establish the essential p30 cofactor Wdr5 as a therapeutic target in CEBPA-mutant AML.


Assuntos
Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Di-Hidropiridinas/farmacologia , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Terapia de Alvo Molecular , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Células Tumorais Cultivadas
15.
Proc Natl Acad Sci U S A ; 111(35): 12853-8, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136132

RESUMO

SET domain containing (lysine methyltransferase) 7 (SETD7) is implicated in multiple signaling and disease related pathways with a broad diversity of reported substrates. Here, we report the discovery of (R)-PFI-2-a first-in-class, potent (Ki (app) = 0.33 nM), selective, and cell-active inhibitor of the methyltransferase activity of human SETD7-and its 500-fold less active enantiomer, (S)-PFI-2. (R)-PFI-2 exhibits an unusual cofactor-dependent and substrate-competitive inhibitory mechanism by occupying the substrate peptide binding groove of SETD7, including the catalytic lysine-binding channel, and by making direct contact with the donor methyl group of the cofactor, S-adenosylmethionine. Chemoproteomics experiments using a biotinylated derivative of (R)-PFI-2 demonstrated dose-dependent competition for binding to endogenous SETD7 in MCF7 cells pretreated with (R)-PFI-2. In murine embryonic fibroblasts, (R)-PFI-2 treatment phenocopied the effects of Setd7 deficiency on Hippo pathway signaling, via modulation of the transcriptional coactivator Yes-associated protein (YAP) and regulation of YAP target genes. In confluent MCF7 cells, (R)-PFI-2 rapidly altered YAP localization, suggesting continuous and dynamic regulation of YAP by the methyltransferase activity of SETD7. These data establish (R)-PFI-2 and related compounds as a valuable tool-kit for the study of the diverse roles of SETD7 in cells and further validate protein methyltransferases as a druggable target class.


Assuntos
Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Pirrolidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Tetra-Hidroisoquinolinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Fibroblastos/efeitos dos fármacos , Via de Sinalização Hippo , Histona-Lisina N-Metiltransferase/genética , Humanos , Células MCF-7 , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Pirrolidinas/química , Relação Estrutura-Atividade , Sulfonamidas/química , Tetra-Hidroisoquinolinas/química , Fatores de Transcrição , Proteínas de Sinalização YAP
16.
J Proteome Res ; 15(6): 2052-9, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27163177

RESUMO

Protein methylation is a post-translational modification with important roles in transcriptional regulation and other biological processes, but the enzyme-substrate relationship between the 68 known human protein methyltransferases and the thousands of reported methylation sites is poorly understood. Here, we propose a bioinformatic approach that integrates structural, biochemical, cellular, and proteomic data to identify novel cellular substrates of the lysine methyltransferase SMYD2. Of the 14 novel putative SMYD2 substrates identified by our approach, six were confirmed in cells by immunoprecipitation: MAPT, CCAR2, EEF2, NCOA3, STUB1, and UTP14A. Treatment with the selective SMYD2 inhibitor BAY-598 abrogated the methylation signal, indicating that methylation of these novel substrates was dependent on the catalytic activity of the enzyme. We believe that our integrative approach can be applied to other protein lysine methyltransferases, and help understand how lysine methylation participates in wider signaling processes.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Proteômica/métodos , Linhagem Celular , Biologia Computacional , Humanos , Imunoprecipitação , Metilação , Processamento de Proteína Pós-Traducional , Especificidade por Substrato
17.
J Biol Chem ; 290(41): 24902-13, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26318451

RESUMO

N(6)-Methyladenosine (m(6)A) is the most abundant internal modification in RNA and is specifically recognized by YT521-B homology (YTH) domain-containing proteins. Recently we reported that YTHDC1 prefers guanosine and disfavors adenosine at the position preceding the m(6)A nucleotide in RNA and preferentially binds to the GG(m(6)A)C sequence. Now we systematically characterized the binding affinities of the YTH domains of three other human proteins and yeast YTH domain protein Pho92 and determined the crystal structures of the YTH domains of human YTHDF1 and yeast Pho92 in complex with a 5-mer m(6)A RNA, respectively. Our binding and structural data revealed that the YTH domain used a conserved aromatic cage to recognize m(6)A. Nevertheless, none of these YTH domains, except YTHDC1, display sequence selectivity at the position preceding the m(6)A modification. Structural comparison of these different YTH domains revealed that among those, only YTHDC1 harbors a distinctly selective binding pocket for the nucleotide preceding the m(6)A nucleotide.


Assuntos
Adenosina/análogos & derivados , Proteínas do Tecido Nervoso/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Evolução Molecular , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Helicases , Fatores de Processamento de RNA , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Especificidade por Substrato
18.
Biochim Biophys Acta ; 1850(9): 1842-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26002201

RESUMO

BACKGROUND: Dysregulation of methylation of lysine 36 on histone H3 (H3K36) have been implicated in a variety of diseases including cancers. ASH1L and SETD2 are two enzymes among others that catalyze H3K36 methylation. H3K4 methylation has also been reported for ASH1L. METHODS: Radioactivity-based enzyme assays, Western and immunoblotting using specific antibodies and molecular modeling were used to characterize substrate specificity of ASH1L and SETD2. RESULTS: Here we report on the assay development and kinetic characterization of ASH1L and SETD2 and their substrate specificities in vitro. Both enzymes were active with recombinant nucleosome as substrate. However, SETD2 but not ASH1L methylated histone peptides as well indicating that the interaction of the basic post-SET extension with substrate may not be critical for SETD2 activity. Both enzymes were not active with nucleosome containing a H3K36A mutation indicating their specificity for H3K36. Analyzing the methylation state of the products of ASH1L and SETD2 reactions also confirmed that both enzymes mono- and dimethylate H3K36 and are inactive with H3K4 as substrate, and that only SETD2 is able to trimethylate H3K36 in vitro. CONCLUSIONS: We determined the kinetic parameters for ASH1L and SETD2 activity enabling screening for inhibitors that can be used to further investigate the roles of these two proteins in health and disease. Both ASH1L and SETD2 are H3K36 specific methyltransferases but only SETD2 can trimethylate this mark. The basic post-SET extension is critical for ASH1L but not SETD2 activity. GENERAL SIGNIFICANCE: We provide full kinetic characterization of ASH1L and SETD2 activity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/química , Histona-Lisina N-Metiltransferase/química , Humanos , Cinética , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Especificidade por Substrato , Fatores de Transcrição/química
20.
Bioorg Med Chem Lett ; 26(18): 4518-4522, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27485386

RESUMO

A number of new nucleoside derivatives are disclosed as inhibitors of DOT1L activity. SARs established that DOT1L inhibition could be achieved through incorporation of polar groups and small heterocycles at the 5-position (5, 6, 12) or by the application of alternative nitrogenous bases (18). Based on these results, CN-SAH (19) was identified as a potent and selective inhibitor of DOT1L activity where the polar 5-nitrile group was shown by crystallography to bind in the hydrophobic pocket of DOT1L. In addition, we show that a polar nitrile group can be used as a non-traditional replacement for heavy halogen atoms.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Halogênios/química , Metiltransferases/antagonistas & inibidores , Nitrilas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Cristalografia , Histona-Lisina N-Metiltransferase , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa