Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 148(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015093

RESUMO

Congenital diaphragmatic hernia (CDH) is a developmental disorder associated with diaphragm defects and lung hypoplasia. The etiology of CDH is complex and its clinical presentation is variable. We investigated the role of the pulmonary mesothelium in dysregulated lung growth noted in the Wt1 knockout mouse model of CDH. Loss of WT1 leads to intrafetal effusions, altered lung growth, and branching defects prior to normal closure of the diaphragm. We found significant differences in key genes; however, when Wt1 null lungs were cultured ex vivo, growth and branching were indistinguishable from wild-type littermates. Micro-CT imaging of embryos in situ within the uterus revealed a near absence of space in the dorsal chest cavity, but no difference in total chest cavity volume in Wt1 null embryos, indicating a redistribution of pleural space. The altered space and normal ex vivo growth suggest that physical constraints are contributing to the CDH lung phenotype observed in this mouse model. These studies emphasize the importance of examining the mesothelium and chest cavity as a whole, rather than focusing on single organs in isolation to understand early CDH etiology.


Assuntos
Diafragma/embriologia , Epitélio/patologia , Hérnias Diafragmáticas Congênitas/genética , Pulmão/embriologia , Proteínas WT1/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Tórax/anatomia & histologia
2.
J Biomech Eng ; 142(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32391560

RESUMO

Premature birth interrupts the development of the lung, resulting in functional deficiencies and the onset of complex pathologies, like bronchopulmonary dysplasia (BPD), that further decrease the functional capabilities of the immature lung. The dysregulation of molecular targets has been implicated in the presentation of BPD, but there is currently no method to correlate resultant morphological changes observed in tissue histology with these perturbations to differences in function throughout saccular and alveolar lung development. Lung compliance is an aggregate measure of the lung's mechanical properties that is highly sensitive to a number of molecular, cellular, and architectural characteristics, but little is known about compliance in the neonatal mouse lung due to measurement challenges. We have developed a novel method to quantify changes in lung volume and pressure to determine inspiratory and expiratory compliance throughout neonatal mouse lung development. The compliance measurements obtained were validated against compliance values from published studies using mature lungs following enzymatic degradation of the extracellular matrix (ECM). The system was then used to quantify changes in compliance that occurred over the entire span of neonatal mouse lung development. These methods fill a critically important gap connecting powerful mouse models of development and disease to measures of functional lung mechanics critical to respiration and enable insights into the genetic, molecular, and cellular underpinnings of BPD pathology to improve lung function in premature infants.


Assuntos
Complacência Pulmonar , Microfluídica , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Pulmão
3.
J Clin Med ; 12(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959180

RESUMO

Ischemic stroke is a highly morbid disease, with over 50% of large vessel stroke (middle cerebral artery or internal carotid artery terminus occlusion) patients suffering disability despite maximal acute reperfusion therapy with thrombolysis and thrombectomy. The discovery of the ischemic penumbra in the 1980s laid the foundation for a salvageable territory in ischemic stroke. Since then, the concept of neuroprotection has been a focus of post-stroke care to (1) minimize the conversion from penumbra to core irreversible infarct, (2) limit secondary damage from ischemia-reperfusion injury, inflammation, and excitotoxicity and (3) to encourage tissue repair. However, despite multiple studies, the preclinical-clinical research enterprise has not yet created an agent that mitigates post-stroke outcomes beyond thrombolysis and mechanical clot retrieval. These translational gaps have not deterred the scientific community as agents are under continuous investigation. The NIH has recently promoted the concept of cerebroprotection to consider the whole brain post-stroke rather than just the neurons. This review will briefly outline the translational science of past, current, and emerging breakthroughs in cerebroprotection and use of these foundational ideas to develop a novel paradigm for optimizing stroke outcomes.

4.
Curr Biol ; 30(4): 624-633.e4, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31983640

RESUMO

Epithelial cells spontaneously form acini (also known as cysts or spheroids) with a single, fluid-filled central lumen when grown in 3D matrices. The size of the lumen is dependent on apical secretion of chloride ions, most notably by the CFTR channel, which has been suggested to establish pressure in the lumen due to water influx. To study the cellular biomechanics of acini morphogenesis and homeostasis, we used MDCK-2 cells. Using FRET-force biosensors for E-cadherin, we observed significant increases in the average tension per molecule for each protein in mature 3D acini as compared to 2D monolayers. Increases in CFTR activity resulted in increased E-cadherin forces, indicating that ionic gradients affect cellular tension. Direct measurements of pressure revealed that mature acini experience significant internal hydrostatic pressure (37 ± 10.9 Pa). Changes in CFTR activity resulted in pressure and/or volume changes, both of which affect E-cadherin tension. Increases in CFTR chloride secretion also induced YAP signaling and cellular proliferation. In order to recapitulate disruption of acinar homeostasis, we induced epithelial-to-mesenchymal transition (EMT). During the initial stages of EMT, there was a gradual decrease in E-cadherin force and lumen pressure that correlated with lumen infilling. Strikingly, increasing CFTR activity was sufficient to block EMT. Our results show that ion secretion is an important regulator of morphogenesis and homeostasis in epithelial acini. Furthermore, this work demonstrates that, for closed 3D cellular systems, ion gradients can generate osmotic pressure or volume changes, both of which result in increased cellular tension.


Assuntos
Células Acinares/fisiologia , Caderinas/fisiologia , Homeostase , Morfogênese , Animais , Fenômenos Biomecânicos , Cães , Células Madin Darby de Rim Canino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa