Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Neurophysiol ; 131(5): 950-963, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629163

RESUMO

Rare disruptions of the transcription factor FOXP1 are implicated in a human neurodevelopmental disorder characterized by autism and/or intellectual disability with prominent problems in speech and language abilities. Avian orthologues of this transcription factor are evolutionarily conserved and highly expressed in specific regions of songbird brains, including areas associated with vocal production learning and auditory perception. Here, we investigated possible contributions of FoxP1 to song discrimination and auditory perception in juvenile and adult female zebra finches. They received lentiviral knockdowns of FoxP1 in one of two brain areas involved in auditory stimulus processing, HVC (proper name) or CMM (caudomedial mesopallium). Ninety-six females, distributed over different experimental and control groups were trained to discriminate between two stimulus songs in an operant Go/Nogo paradigm and subsequently tested with an array of stimuli. This made it possible to assess how well they recognized and categorized altered versions of training stimuli and whether localized FoxP1 knockdowns affected the role of different features during discrimination and categorization of song. Although FoxP1 expression was significantly reduced by the knockdowns, neither discrimination of the stimulus songs nor categorization of songs modified in pitch, sequential order of syllables or by reversed playback were affected. Subsequently, we analyzed the full dataset to assess the impact of the different stimulus manipulations for cue weighing in song discrimination. Our findings show that zebra finches rely on multiple parameters for song discrimination, but with relatively more prominent roles for spectral parameters and syllable sequencing as cues for song discrimination.NEW & NOTEWORTHY In humans, mutations of the transcription factor FoxP1 are implicated in speech and language problems. In songbirds, FoxP1 has been linked to male song learning and female preference strength. We found that FoxP1 knockdowns in female HVC and caudomedial mesopallium (CMM) did not alter song discrimination or categorization based on spectral and temporal information. However, this large dataset allowed to validate different cue weights for spectral over temporal information for song recognition.


Assuntos
Sinais (Psicologia) , Aprendizagem por Discriminação , Tentilhões , Fatores de Transcrição Forkhead , Técnicas de Silenciamento de Genes , Vocalização Animal , Animais , Tentilhões/fisiologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Feminino , Aprendizagem por Discriminação/fisiologia , Vocalização Animal/fisiologia , Percepção Auditiva/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Estimulação Acústica
2.
Anim Cogn ; 25(2): 249-274, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34405288

RESUMO

Bird song and human speech are learned early in life and for both cases engagement with live social tutors generally leads to better learning outcomes than passive audio-only exposure. Real-world tutor-tutee relations are normally not uni- but multimodal and observations suggest that visual cues related to sound production might enhance vocal learning. We tested this hypothesis by pairing appropriate, colour-realistic, high frame-rate videos of a singing adult male zebra finch tutor with song playbacks and presenting these stimuli to juvenile zebra finches (Taeniopygia guttata). Juveniles exposed to song playbacks combined with video presentation of a singing bird approached the stimulus more often and spent more time close to it than juveniles exposed to audio playback only or audio playback combined with pixelated and time-reversed videos. However, higher engagement with the realistic audio-visual stimuli was not predictive of better song learning. Thus, although multimodality increased stimulus engagement and biologically relevant video content was more salient than colour and movement equivalent videos, the higher engagement with the realistic audio-visual stimuli did not lead to enhanced vocal learning. Whether the lack of three-dimensionality of a video tutor and/or the lack of meaningful social interaction make them less suitable for facilitating song learning than audio-visual exposure to a live tutor remains to be tested.


Assuntos
Tentilhões , Animais , Cor , Sinais (Psicologia) , Aprendizagem , Masculino , Vocalização Animal
3.
J Neurosci ; 39(49): 9782-9796, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31641053

RESUMO

Mutations in the transcription factors FOXP1 and FOXP2 are associated with speech impairments. FOXP1 is additionally linked to cognitive deficits, as is FOXP4. These FoxP proteins are highly conserved in vertebrates and expressed in comparable brain regions, including the striatum. In male zebra finches, experimental manipulation of FoxP2 in Area X, a striatal song nucleus essential for vocal production learning, affects song development, adult song production, dendritic spine density, and dopamine-regulated synaptic transmission of striatal neurons. We previously showed that, in the majority of Area X neurons FoxP1, FoxP2, and FoxP4 are coexpressed, can dimerize and multimerize with each other and differentially regulate the expression of target genes. These findings raise the possibility that FoxP1, FoxP2, and FoxP4 (FoxP1/2/4) affect neural function differently and in turn vocal learning. To address this directly, we downregulated FoxP1 or FoxP4 in Area X of juvenile zebra finches and compared the resulting song phenotypes with the previously described inaccurate and incomplete song learning after FoxP2 knockdown. We found that experimental downregulation of FoxP1 and FoxP4 led to impaired song learning with partly similar features as those reported for FoxP2 knockdowns. However, there were also specific differences between the groups, leading us to suggest that specific features of the song are differentially impacted by developmental manipulations of FoxP1/2/4 expression in Area X.SIGNIFICANCE STATEMENT We compared the effects of experimentally reduced expression of the transcription factors FoxP1, FoxP2, and FoxP4 in a striatal song nucleus, Area X, on vocal production learning in juvenile male zebra finches. We show, for the first time, that these temporally and spatially precise manipulations of the three FoxPs affect spectral and temporal song features differentially. This is important because it raises the possibility that the different FoxPs control different aspects of vocal learning through combinatorial gene expression or by acting in different microcircuits within Area X. These results are consistent with the deleterious effects of human FOXP1 and FOXP2 mutations on speech and language and add FOXP4 as a possible candidate gene for vocal disorders.


Assuntos
Proteínas Aviárias/fisiologia , Tentilhões/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Vocalização Animal/fisiologia , Animais , Proteínas Aviárias/genética , Regulação para Baixo , Fatores de Transcrição Forkhead/genética , Aprendizagem , Masculino , Mutação/genética , Desempenho Psicomotor/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Comportamento Estereotipado
4.
BMC Neurosci ; 19(1): 69, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400853

RESUMO

BACKGROUND: FoxP transcription factors play crucial roles for the development and function of vertebrate brains. In humans the neurally expressed FOXPs, FOXP1, FOXP2, and FOXP4 are implicated in cognition, including language. Neural FoxP expression is specific to particular brain regions but FoxP1, FoxP2 and FoxP4 are not limited to a particular neuron or neurotransmitter type. Motor- or sensory activity can regulate FoxP2 expression, e.g. in the striatal nucleus Area X of songbirds and in the auditory thalamus of mice. The DNA-binding domain of FoxP proteins is highly conserved within metazoa, raising the possibility that cellular functions were preserved across deep evolutionary time. We have previously shown in bee brains that FoxP is expressed in eleven specific neuron populations, seven tightly packed clusters and four loosely arranged groups. RESULTS: The present study examined the co-expression of honeybee FoxP (AmFoxP) with markers for glutamatergic, GABAergic, cholinergic and monoaminergic transmission. We found that AmFoxP could co-occur with any one of those markers. Interestingly, AmFoxP clusters and AmFoxP groups differed with respect to homogeneity of marker co-expression; within a cluster, all neurons co-expressed the same neurotransmitter marker, within a group co-expression varied. We also assessed qualitatively whether age or housing conditions providing different sensory and motor experiences affected the AmFoxP neuron populations, but found no differences. CONCLUSIONS: Based on the neurotransmitter homogeneity we conclude that AmFoxP neurons within the clusters might have a common projection and function whereas the AmFoxP groups are more diverse and could be further sub-divided. The obtained information about the neurotransmitters co-expressed in the AmFoxP neuron populations facilitated the search of similar neurons described in the literature. These comparisons revealed e.g. a possible function of AmFoxP neurons in the central complex. Our findings provide opportunities to focus future functional studies on invertebrate FoxP expressing neurons. In a broader context, our data will contribute to the ongoing efforts to discern in which cases relationships between molecular and phenotypic signatures are linked evolutionary.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas de Insetos/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Envelhecimento/metabolismo , Animais , Abelhas , Encéfalo/citologia , Encéfalo/metabolismo , Hibridização In Situ , Neurônios/citologia
5.
Eur J Neurosci ; 46(9): 2534-2541, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28921711

RESUMO

The arthropod mushroom bodies (MB) are a higher order sensory integration centre. In insects, they play a central role in associative olfactory learning and memory. In Drosophila melanogaster (Dm), the highly ordered connectivity of heterogeneous MB neuron populations has been mapped using sophisticated molecular genetic and anatomical techniques. The MB-core subpopulation was recently shown to express the transcription factor FoxP with relevance for decision-making. Here, we report the development and adult distribution of a FoxP-expressing neuron population in the MB of honeybees (Apis mellifera, Am) using in situ hybridisation and a custom-made antiserum. We found the same expression pattern in adult bumblebees (Bombus terrestris, Bt). We also designed a new Dm transgenic line that reports FoxP transcriptional activity in the MB-core region, clarifying previously conflicting data of two other reporter lines. Considering developmental, anatomical and molecular similarities, our data are consistent with the concept of deep homology of FoxP expression in neuron populations coding reinforcement-based learning and habit formation.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas de Insetos/metabolismo , Corpos Pedunculados/citologia , Corpos Pedunculados/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Animais Geneticamente Modificados , Abelhas , Western Blotting , Contagem de Células , Drosophila melanogaster , Expressão Gênica , Hábitos , Hibridização In Situ , Aprendizagem
6.
Mol Cell Neurosci ; 74: 96-105, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27105823

RESUMO

Mutations of the transcription factor FOXP2 cause a severe speech and language disorder. In songbirds, FoxP2 is expressed in the medium spiny neurons (MSNs) of the avian basal ganglia song nucleus, Area X, which is crucial for song learning and adult song performance. Experimental downregulation of FoxP2 in Area X affects spine formation, prevents neuronal plasticity induced by social context and impairs song learning. Direct target genes of FoxP2 relevant for song learning and song production are unknown. Here we show that a lentivirally mediated FoxP2 knockdown in Area X of zebra finches downregulates the expression of VLDLR, one of the two reelin receptors. Zebra finch FoxP2 binds to the promoter of VLDLR and activates it, establishing VLDLR as a direct FoxP2 target. Consistent with these findings, VLDLR expression is co-regulated with FoxP2 as a consequence of adult singing and during song learning. We also demonstrate that knockdown of FoxP2 affects glutamatergic transmission at the corticostriatal MSN synapse. These data raise the possibility that the regulatory relationship between FoxP2 and VLDLR guides structural plasticity towards the subset of FoxP2-positive MSNs in an activity dependent manner via the reelin pathway.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptores de LDL/metabolismo , Ativação Transcricional , Vocalização Animal , Animais , Gânglios da Base/metabolismo , Gânglios da Base/fisiologia , Tentilhões , Fatores de Transcrição Forkhead/genética , Aprendizagem , Masculino , N-Metilaspartato/metabolismo , Plasticidade Neuronal , Regiões Promotoras Genéticas , Ligação Proteica , Receptores de LDL/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
7.
Nat Rev Neurosci ; 11(11): 747-59, 2010 11.
Artigo em Inglês | MEDLINE | ID: mdl-20959859

RESUMO

Vocal imitation in human infants and in some orders of birds relies on auditory-guided motor learning during a sensitive period of development. It proceeds from 'babbling' (in humans) and 'subsong' (in birds) through distinct phases towards the full-fledged communication system. Language development and birdsong learning have parallels at the behavioural, neural and genetic levels. Different orders of birds have evolved networks of brain regions for song learning and production that have a surprisingly similar gross anatomy, with analogies to human cortical regions and basal ganglia. Comparisons between different songbird species and humans point towards both general and species-specific principles of vocal learning and have identified common neural and molecular substrates, including the forkhead box P2 (FOXP2) gene.


Assuntos
Evolução Biológica , Desenvolvimento da Linguagem , Aves Canoras/fisiologia , Fala/fisiologia , Vocalização Animal/fisiologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia
8.
Proc Biol Sci ; 281(1785): 20140460, 2014 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-24807258

RESUMO

The singing of song birds can form complex signal systems comprised of numerous subunits sung with distinct combinatorial properties that have been described as syntax-like. This complexity has inspired inquiries into similarities of bird song to human language; but the quantitative analysis and description of song sequences is a challenging task. In this study, we analysed song sequences of common nightingales (Luscinia megarhynchos) by means of a network analysis. We translated long nocturnal song sequences into networks of song types with song transitions as connectors. As network measures, we calculated shortest path length and transitivity and identified the 'small-world' character of nightingale song networks. Besides comparing network measures with conventional measures of song complexity, we also found a correlation between network measures and age of birds. Furthermore, we determined the numbers of in-coming and out-going edges of each song type, characterizing transition patterns. These transition patterns were shared across males for certain song types. Playbacks with different transition patterns provided first evidence that these patterns are responded to differently and thus play a role in singing interactions. We discuss potential functions of the network properties of song sequences in the framework of vocal leadership. Network approaches provide biologically meaningful parameters to describe the song structure of species with extremely large repertoires and complex rules of song retrieval.


Assuntos
Aves Canoras/fisiologia , Vocalização Animal , Animais , Berlim , Masculino , Redes Neurais de Computação
9.
BMC Biol ; 11: 1, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23294804

RESUMO

BACKGROUND: Like human infants, songbirds learn their species-specific vocalizations through imitation learning. The birdsong system has emerged as a widely used experimental animal model for understanding the underlying neural mechanisms responsible for vocal production learning. However, how neural impulses are translated into the precise motor behavior of the complex vocal organ (syrinx) to create song is poorly understood. First and foremost, we lack a detailed understanding of syringeal morphology. RESULTS: To fill this gap we combined non-invasive (high-field magnetic resonance imaging and micro-computed tomography) and invasive techniques (histology and micro-dissection) to construct the annotated high-resolution three-dimensional dataset, or morphome, of the zebra finch (Taeniopygia guttata) syrinx. We identified and annotated syringeal cartilage, bone and musculature in situ in unprecedented detail. We provide interactive three-dimensional models that greatly improve the communication of complex morphological data and our understanding of syringeal function in general. CONCLUSIONS: Our results show that the syringeal skeleton is optimized for low weight driven by physiological constraints on song production. The present refinement of muscle organization and identity elucidates how apposed muscles actuate different syringeal elements. Our dataset allows for more precise predictions about muscle co-activation and synergies and has important implications for muscle activity and stimulation experiments. We also demonstrate how the syrinx can be stabilized during song to reduce mechanical noise and, as such, enhance repetitive execution of stereotypic motor patterns. In addition, we identify a cartilaginous structure suited to play a crucial role in the uncoupling of sound frequency and amplitude control, which permits a novel explanation of the evolutionary success of songbirds.


Assuntos
Comunicação Animal , Aves Canoras/anatomia & histologia , Animais , Aves Canoras/fisiologia
10.
Nat Genet ; 35(4): 313-5, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14634649

RESUMO

We found mutations in the gene PQBP1 in 5 of 29 families with nonsyndromic (MRX) and syndromic (MRXS) forms of X-linked mental retardation (XLMR). Clinical features in affected males include mental retardation, microcephaly, short stature, spastic paraplegia and midline defects. PQBP1 has previously been implicated in the pathogenesis of polyglutamine expansion diseases. Our findings link this gene to XLMR and shed more light on the pathogenesis of this common disorder.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação/genética , Oligopeptídeos/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA , Feminino , Ligação Genética , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/classificação , Deficiência Intelectual Ligada ao Cromossomo X/etiologia , Dados de Sequência Molecular , Proteínas Nucleares/genética , Linhagem , Síndrome
11.
eNeuro ; 10(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36931727

RESUMO

The search for molecular underpinnings of human vocal communication has focused on genes encoding forkhead-box transcription factors, as rare disruptions of FOXP1, FOXP2, and FOXP4 have been linked to disorders involving speech and language deficits. In male songbirds, an animal model for vocal learning, experimentally altered expression levels of these transcription factors impair song production learning. The relative contributions of auditory processing, motor function or auditory-motor integration to the deficits observed after different FoxP manipulations in songbirds are unknown. To examine the potential effects on auditory learning and development, we focused on female zebra finches (Taeniopygia guttata) that do not sing but develop song memories, which can be assayed in operant preference tests. We tested whether the relatively high levels of FoxP1 expression in forebrain areas implicated in female song preference learning are crucial for the development and/or maintenance of this behavior. Juvenile and adult female zebra finches received FoxP1 knockdowns targeted to HVC (proper name) or to the caudomedial mesopallium (CMM). Irrespective of target site and whether the knockdown took place before (juveniles) or after (adults) the sensitive phase for song memorization, all groups preferred their tutor's song. However, adult females with FoxP1 knockdowns targeted at HVC showed weaker motivation to hear song and weaker song preferences than sham-treated controls, while no such differences were observed after knockdowns in CMM or in juveniles. In summary, FoxP1 knockdowns in the cortical song nucleus HVC were not associated with impaired tutor song memory but reduced motivation to actively request tutor songs.


Assuntos
Tentilhões , Animais , Humanos , Masculino , Feminino , Vocalização Animal , Aprendizagem , Prosencéfalo , Fatores de Transcrição , Proteínas Repressoras , Fatores de Transcrição Forkhead/genética
12.
J Comp Neurol ; 531(4): 561-581, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36550622

RESUMO

Visual (and probably also magnetic) signal processing starts at the first synapse, at which photoreceptors contact different types of bipolar cells, thereby feeding information into different processing channels. In the chicken retina, 15 and 22 different bipolar cell types have been identified based on serial electron microscopy and single-cell transcriptomics, respectively. However, immunohistochemical markers for avian bipolar cells were only anecdotally described so far. Here, we systematically tested 12 antibodies for their ability to label individual bipolar cells in the bird retina and compared the eight most suitable antibodies across distantly related species, namely domestic chicken, domestic pigeon, common buzzard, and European robin, and across retinal regions. While two markers (GNB3 and EGFR) labeled specifically ON bipolar cells, most markers labeled in addition to bipolar cells also other cell types in the avian retina. Staining pattern of four markers (CD15, PKCα, PKCß, secretagogin) was species-specific. Two markers (calbindin and secretagogin) showed a different expression pattern in central and peripheral retina. For the chicken and European robin, we found slightly more ON bipolar cell somata in the inner nuclear layer than OFF bipolar cell somata. In contrast, OFF bipolar cells made more ribbon synapses than ON bipolar cells in the inner plexiform layer of these species. Finally, we also analyzed the photoreceptor connectivity of selected bipolar cell types in the European robin retina. In summary, we provide a catalog of bipolar cell markers for different bird species, which will greatly facilitate analyzing the retinal circuitry of birds on a larger scale.


Assuntos
Secretagoginas , Aves Canoras , Animais , Secretagoginas/metabolismo , Retina/química , Microscopia Eletrônica , Sinapses/metabolismo , Galinhas , Células Fotorreceptoras Retinianas Cones , Células Bipolares da Retina
13.
Trends Genet ; 25(4): 166-77, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19304338

RESUMO

Rare mutations of the FOXP2 transcription factor gene cause a monogenic syndrome characterized by impaired speech development and linguistic deficits. Recent genomic investigations indicate that its downstream neural targets make broader impacts on common language impairments, bridging clinically distinct disorders. Moreover, the striking conservation of both FoxP2 sequence and neural expression in different vertebrates facilitates the use of animal models to study ancestral pathways that have been recruited towards human speech and language. Intriguingly, reduced FoxP2 dosage yields abnormal synaptic plasticity and impaired motor-skill learning in mice, and disrupts vocal learning in songbirds. Converging data indicate that Foxp2 is important for modulating the plasticity of relevant neural circuits. This body of research represents the first functional genetic forays into neural mechanisms contributing to human spoken language.


Assuntos
Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/fisiologia , Transtornos da Linguagem/genética , Idioma , Mutação , Proteínas Repressoras/genética , Fala , Animais , Aves , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Transtornos da Linguagem/patologia , Camundongos , Modelos Genéticos , Plasticidade Neuronal , Proteínas Repressoras/fisiologia , Vocalização Animal
14.
Front Zool ; 8(1): 29, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22071317

RESUMO

The song of oscines provides an extensively studied model of age-dependent behaviour changes. Male and female receivers might use song characteristics to obtain information about the age of a signaller, which is often related to its quality. Whereas most of the age-dependent song changes have been studied in solo singing, the role of age in vocal interactions is less well understood. We addressed this issue in a playback study with common nightingales (Luscinia megarhynchos). Previous studies showed that male nightingales had smaller repertoires in their first year than older males and males adjusted their repertoire towards the most common songs in the breeding population. We now compared vocal interaction patterns in a playback study in 12 one year old and 12 older nightingales (cross-sectional approach). Five of these males were tested both in their first and second breeding season (longitudinal approach). Song duration and latency to respond did not differ between males of different ages in either approach. In the cross-sectional approach, one year old nightingales matched song types twice as often as did older birds. Similarly, in the longitudinal approach all except one bird reduced the number of song type matches in their second season. Individuals tended to overlap songs at higher rates in their second breeding season than in their first. The higher levels of song type matches in the first year and song overlapping by birds in their second year suggest that these are communicative strategies to establish relationships with competing males and/or choosy females.

15.
PLoS Biol ; 5(12): e321, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18052609

RESUMO

The gene encoding the forkhead box transcription factor, FOXP2, is essential for developing the full articulatory power of human language. Mutations of FOXP2 cause developmental verbal dyspraxia (DVD), a speech and language disorder that compromises the fluent production of words and the correct use and comprehension of grammar. FOXP2 patients have structural and functional abnormalities in the striatum of the basal ganglia, which also express high levels of FOXP2. Since human speech and learned vocalizations in songbirds bear behavioral and neural parallels, songbirds provide a genuine model for investigating the basic principles of speech and its pathologies. In zebra finch Area X, a basal ganglia structure necessary for song learning, FoxP2 expression increases during the time when song learning occurs. Here, we used lentivirus-mediated RNA interference (RNAi) to reduce FoxP2 levels in Area X during song development. Knockdown of FoxP2 resulted in an incomplete and inaccurate imitation of tutor song. Inaccurate vocal imitation was already evident early during song ontogeny and persisted into adulthood. The acoustic structure and the duration of adult song syllables were abnormally variable, similar to word production in children with DVD. Our findings provide the first example of a functional gene analysis in songbirds and suggest that normal auditory-guided vocal motor learning requires FoxP2.


Assuntos
Gânglios da Base/anatomia & histologia , Gânglios da Base/metabolismo , Tentilhões/fisiologia , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/metabolismo , Vocalização Animal/fisiologia , Animais , Tentilhões/anatomia & histologia , Tentilhões/genética , Tentilhões/metabolismo , Fatores de Transcrição Forkhead/genética , Lentivirus/genética , Masculino , Dados de Sequência Molecular , Interferência de RNA
16.
Sci Rep ; 10(1): 4787, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179863

RESUMO

The transcription factor FOXP2 is crucial for the formation and function of cortico-striatal circuits. FOXP2 mutations are associated with specific speech and language impairments. In songbirds, experimentally altered FoxP2 expression levels in the striatal song nucleus Area X impair vocal learning and song production. Overall FoxP2 protein levels in Area X are low in adult zebra finches and decrease further with singing. However, some Area X medium spiny neurons (MSNs) express FoxP2 at high levels (FoxP2high MSNs) and singing does not change this. Because Area X receives many new neurons throughout adulthood, we hypothesized that the FoxP2high MSNs are newly recruited neurons, not yet integrated into the local Area X circuitry and thus not active during singing. Contrary to our expectation, FoxP2 protein levels did not predict whether new MSNs were active during singing, assayed via immediate early gene expression. However, new FoxP2high MSNs had more complex dendrites, higher spine density and more mushroom spines than new FoxP2low MSNs. In addition, FoxP2 expression levels correlated positively with nucleus size of new MSNs. Together, our data suggest that dynamic FoxP2 levels in new MSNs shape their morphology during maturation and their incorporation into a neural circuit that enables the maintenance and social modulation of adult birdsong.


Assuntos
Corpo Estriado/citologia , Corpo Estriado/metabolismo , Tentilhões/genética , Tentilhões/fisiologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Neurônios/metabolismo , Neurônios/fisiologia , Animais , Dendritos , Masculino , Vocalização Animal/fisiologia
17.
R Soc Open Sci ; 6(1): 181076, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30800360

RESUMO

Rhythm is an essential component of human speech and music but very little is known about its evolutionary origin and its distribution in animal vocalizations. We found a regular rhythm in three multisyllabic vocalization types (echolocation call sequences, male territorial songs and pup isolation calls) of the neotropical bat Saccopteryx bilineata. The intervals between element onsets were used to fit the rhythm for each individual. For echolocation call sequences, we expected rhythm frequencies around 6-24 Hz, corresponding to the wingbeat in S. bilineata which is strongly coupled to echolocation calls during flight. Surprisingly, we found rhythm frequencies between 6 and 24 Hz not only for echolocation sequences but also for social vocalizations, e.g. male territorial songs and pup isolation calls, which were emitted while bats were stationary. Fourier analysis of element onsets confirmed an isochronous rhythm across individuals and vocalization types. We speculate that attentional tuning to the rhythms of echolocation calls on the receivers' side might make the production of equally steady rhythmic social vocalizations beneficial.

18.
J Comp Neurol ; 526(9): 1589-1610, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29536541

RESUMO

Mutations in the transcription factors FOXP1, FOXP2, and FOXP4 affect human cognition, including language. The FoxP gene locus is evolutionarily ancient and highly conserved in its DNA-binding domain. In Drosophila melanogaster FoxP has been implicated in courtship behavior, decision making, and specific types of motor-learning. Because honeybees (Apis mellifera, Am) excel at navigation and symbolic dance communication, they are a particularly suitable insect species to investigate a potential link between neural FoxP expression and cognition. We characterized two AmFoxP isoforms and mapped their expression in the brain during development and in adult foragers. Using a custom-made antiserum and in situ hybridization, we describe 11 AmFoxP expressing neuron populations. FoxP was expressed in equivalent patterns in two other representatives of Apidae; a closely related dwarf bee and a bumblebee species. Neural tracing revealed that the largest FoxP expressing neuron cluster in honeybees projects into a posterior tract that connects the optic lobe to the posterior lateral protocerebrum, predicting a function in visual processing. Our data provide an entry point for future experiments assessing the function of FoxP in eusocial Hymenoptera.


Assuntos
Abelhas/crescimento & desenvolvimento , Abelhas/metabolismo , Encéfalo , Fatores de Transcrição Forkhead/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Clonagem Molecular , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mutação/genética , Neurônios/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Especificidade da Espécie
19.
J Neurosci ; 26(41): 10376-9, 2006 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17035521

RESUMO

In 2001, a point mutation in the forkhead box P2 (FOXP2) coding sequence was identified as the basis of an inherited speech and language disorder suffered by members of the family known as "KE." This mini-symposium review focuses on recent findings and research-in-progress, primarily from five laboratories. Each aims at capitalizing on the FOXP2 discovery to build a neurobiological bridge between molecule and phenotype. Below, we describe genetic through behavioral techniques used currently to investigate FoxP2 in birds, rodents, and humans for discovery of the neural bases of vocal learning and language.


Assuntos
Fatores de Transcrição Forkhead/fisiologia , Transtornos da Linguagem/fisiopatologia , Idioma , Aves Canoras/fisiologia , Fala/fisiologia , Vocalização Animal/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Transtornos da Linguagem/genética , Camundongos
20.
Curr Opin Neurobiol ; 15(6): 694-703, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16266802

RESUMO

FoxP2 mutations in humans are associated with a disorder that affects both the comprehension of language and its production, speech. This discovery provided the first opportunity to analyze the genetics of language with molecular and neurobiological tools. The amino acid sequence and the neural expression pattern of FoxP2 are extremely conserved, from reptile to man. This suggests an important role for FoxP2 in vertebrate brains, regardless of whether they support imitative vocal learning or not. Its expression pattern pinpoints neural circuits that might have been crucial for the evolution of speech and language, including the basal ganglia and the cerebellum. Recent studies in songbirds show that during times of song plasticity FoxP2 is upregulated in a striatal region essential for song learning. This suggests that FoxP2 plays important roles both in the development of neural circuits and in the postnatal behaviors they mediate.


Assuntos
Evolução Biológica , Aves/fisiologia , Fatores de Transcrição Forkhead/genética , Animais , Encéfalo/anatomia & histologia , Química Encefálica/genética , Química Encefálica/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Aprendizagem/fisiologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Vocalização Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa