Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1865(4): 638-649, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29378216

RESUMO

Most cancer deaths result from metastasis, which is the dissemination of cells from a primary tumor to distant organs. Metastasis involves changes to molecules that are essential for tumor cell adhesion to the extracellular matrix and to endothelial cells. Junctional Adhesion Molecule C (JAM-C) localizes at intercellular junctions as homodimers or more affine heterodimers with JAM-B. We previously showed that the homodimerization site (E66) in JAM-C is also involved in JAM-B binding. Here we show that neoexpression of JAM-C in a JAM-C-negative carcinoma cell line induced loss of adhesive property and pro-metastatic capacities. We also identify two critical structural sites (E66 and K68) for JAM-C/JAM-B interaction by directed mutagenesis of JAM-C and studied their implication on tumor cell behavior. JAM-C mutants did not bind to JAM-B or localize correctly to junctions. Moreover, mutated JAM-C proteins increased adhesion and reduced proliferation and migration of lung carcinoma cell lines. Carcinoma cells expressing mutant JAM-C grew slower than with JAM-C WT and were not able to establish metastatic lung nodules in mice. Overall these data demonstrate that the dimerization sites E66-K68 of JAM-C affected cell adhesion, polarization and migration and are essential for tumor cell metastasis.


Assuntos
Movimento Celular , Molécula C de Adesão Juncional/metabolismo , Multimerização Proteica , Sequência de Aminoácidos , Animais , Adesão Celular , Linhagem Celular Tumoral , Polaridade Celular , Proliferação de Células , Células Epiteliais/patologia , Molécula B de Adesão Juncional/metabolismo , Molécula C de Adesão Juncional/química , Molécula C de Adesão Juncional/genética , Pulmão/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Mutantes/metabolismo , Mutação/genética , Metástase Neoplásica , Fenótipo , Ligação Proteica
2.
Mol Biol Evol ; 32(6): 1598-610, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25757852

RESUMO

Despite Cnidaria (sea anemones, corals, jellyfish, and hydroids) being the oldest venomous animal lineage, structure-function relationships, phyletic distributions, and the molecular evolutionary regimes of toxins encoded by these intriguing animals are poorly understood. Hence, we have comprehensively elucidated the phylogenetic and molecular evolutionary histories of pharmacologically characterized cnidarian toxin families, including peptide neurotoxins (voltage-gated Na(+) and K(+) channel-targeting toxins: NaTxs and KTxs, respectively), pore-forming toxins (actinoporins, aerolysin-related toxins, and jellyfish toxins), and the newly discovered small cysteine-rich peptides (SCRiPs). We show that despite long evolutionary histories, most cnidarian toxins remain conserved under the strong influence of negative selection-a finding that is in striking contrast to the rapid evolution of toxin families in evolutionarily younger lineages, such as cone snails and advanced snakes. In contrast to the previous suggestions that implicated SCRiPs in the biomineralization process in corals, we demonstrate that they are potent neurotoxins that are likely involved in the envenoming function, and thus represent the first family of neurotoxins from corals. We also demonstrate the common evolutionary origin of type III KTxs and NaTxs in sea anemones. We show that type III KTxs have evolved from NaTxs under the regime of positive selection, and likely represent a unique evolutionary innovation of the Actinioidea lineage. We report a correlation between the accumulation of episodically adaptive sites and the emergence of novel pharmacological activities in this rapidly evolving neurotoxic clade.


Assuntos
Venenos de Cnidários/genética , Evolução Molecular , Neurotoxinas/genética , Potássio/química , Anêmonas-do-Mar/genética , Sódio/química , Sequência de Aminoácidos , Animais , Clonagem Molecular , Venenos de Cnidários/química , Regulação da Expressão Gênica , Dados de Sequência Molecular , Neurotoxinas/química , Filogenia , Conformação Proteica , Anêmonas-do-Mar/classificação , Anêmonas-do-Mar/metabolismo
3.
Mol Cell Proteomics ; 12(7): 1881-99, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23547263

RESUMO

Although it has been established that all toxicoferan squamates share a common venomous ancestor, it has remained unclear whether the maxillary and mandibular venom glands are evolving on separate gene expression trajectories or if they remain under shared genetic control. We show that identical transcripts are simultaneously expressed not only in the mandibular and maxillary glands, but also in the enigmatic snake rictal gland. Toxin molecular frameworks recovered in this study were three-finger toxin (3FTx), CRiSP, crotamine (beta-defensin), cobra venom factor, cystatin, epididymal secretory protein, kunitz, L-amino acid oxidase, lectin, renin aspartate protease, veficolin, and vespryn. We also discovered a novel low-molecular weight disulfide bridged peptide class in pythonid snake glands. In the iguanian lizards, the most highly expressed are potentially antimicrobial in nature (crotamine (beta-defensin) and cystatin), with crotamine (beta-defensin) also the most diverse. However, a number of proteins characterized from anguimorph lizards and caenophidian snakes with hemotoxic or neurotoxic activities were recruited in the common toxicoferan ancestor and remain expressed, albeit in low levels, even in the iguanian lizards. In contrast, the henophidian snakes express 3FTx and lectin toxins as the dominant transcripts. Even in the constricting pythonid and boid snakes, where the glands are predominantly mucous-secreting, low-levels of toxin transcripts can be detected. Venom thus appears to play little role in feeding behavior of most iguanian lizards or the powerful constricting snakes, and the low levels of expression argue against a defensive role. However, clearly the incipient or secondarily atrophied venom systems of these taxa may be a source of novel compounds useful in drug design and discovery.


Assuntos
Lagartos/genética , Serpentes/genética , Peçonhas/genética , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Transcriptoma , Peçonhas/química
4.
Annu Rev Genomics Hum Genet ; 10: 483-511, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19640225

RESUMO

Throughout evolution, numerous proteins have been convergently recruited into the venoms of various animals, including centipedes, cephalopods, cone snails, fish, insects (several independent venom systems), platypus, scorpions, shrews, spiders, toxicoferan reptiles (lizards and snakes), and sea anemones. The protein scaffolds utilized convergently have included AVIT/colipase/prokineticin, CAP, chitinase, cystatin, defensins, hyaluronidase, Kunitz, lectin, lipocalin, natriuretic peptide, peptidase S1, phospholipase A(2), sphingomyelinase D, and SPRY. Many of these same venom protein types have also been convergently recruited for use in the hematophagous gland secretions of invertebrates (e.g., fleas, leeches, kissing bugs, mosquitoes, and ticks) and vertebrates (e.g., vampire bats). Here, we discuss a number of overarching structural, functional, and evolutionary generalities of the protein families from which these toxins have been frequently recruited and propose a revised and expanded working definition for venom. Given the large number of striking similarities between the protein compositions of conventional venoms and hematophagous secretions, we argue that the latter should also fall under the same definition.


Assuntos
Proteínas/genética , Toxicogenética , Peçonhas/genética , Peçonhas/toxicidade , Adaptação Biológica , Animais , Genoma , Humanos , Filogenia
5.
Nature ; 439(7076): 584-8, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16292255

RESUMO

Among extant reptiles only two lineages are known to have evolved venom delivery systems, the advanced snakes and helodermatid lizards (Gila Monster and Beaded Lizard). Evolution of the venom system is thought to underlie the impressive radiation of the advanced snakes (2,500 of 3,000 snake species). In contrast, the lizard venom system is thought to be restricted to just two species and to have evolved independently from the snake venom system. Here we report the presence of venom toxins in two additional lizard lineages (Monitor Lizards and Iguania) and show that all lineages possessing toxin-secreting oral glands form a clade, demonstrating a single early origin of the venom system in lizards and snakes. Construction of gland complementary-DNA libraries and phylogenetic analysis of transcripts revealed that nine toxin types are shared between lizards and snakes. Toxinological analyses of venom components from the Lace Monitor Varanus varius showed potent effects on blood pressure and clotting ability, bioactivities associated with a rapid loss of consciousness and extensive bleeding in prey. The iguanian lizard Pogona barbata retains characteristics of the ancestral venom system, namely serial, lobular non-compound venom-secreting glands on both the upper and lower jaws, whereas the advanced snakes and anguimorph lizards (including Monitor Lizards, Gila Monster and Beaded Lizard) have more derived venom systems characterized by the loss of the mandibular (lower) or maxillary (upper) glands. Demonstration that the snakes, iguanians and anguimorphs form a single clade provides overwhelming support for a single, early origin of the venom system in lizards and snakes. These results provide new insights into the evolution of the venom system in squamate reptiles and open new avenues for biomedical research and drug design using hitherto unexplored venom proteins.


Assuntos
Evolução Biológica , Lagartos/fisiologia , Serpentes/fisiologia , Peçonhas/metabolismo , Animais , Evolução Molecular , Lagartos/anatomia & histologia , Masculino , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Agregação Plaquetária/efeitos dos fármacos , Conformação Proteica , Ratos , Venenos de Serpentes/química , Venenos de Serpentes/metabolismo , Venenos de Serpentes/farmacologia , Serpentes/anatomia & histologia , Peçonhas/química , Peçonhas/farmacologia
6.
Mol Cell Proteomics ; 9(11): 2369-90, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20631207

RESUMO

Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this ∼130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding domains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A(2) toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms.


Assuntos
Evolução Molecular , Lagartos , Peçonhas/química , Sequência de Aminoácidos , Animais , Biblioteca Gênica , Humanos , Lagartos/anatomia & histologia , Lagartos/classificação , Lagartos/metabolismo , Masculino , Dados de Sequência Molecular , Filogenia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Alinhamento de Sequência , Peçonhas/genética , Peçonhas/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(22): 8969-74, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19451641

RESUMO

The predatory ecology of Varanus komodoensis (Komodo Dragon) has been a subject of long-standing interest and considerable conjecture. Here, we investigate the roles and potential interplay between cranial mechanics, toxic bacteria, and venom. Our analyses point to the presence of a sophisticated combined-arsenal killing apparatus. We find that the lightweight skull is relatively poorly adapted to generate high bite forces but better adapted to resist high pulling loads. We reject the popular notion regarding toxic bacteria utilization. Instead, we demonstrate that the effects of deep wounds inflicted are potentiated through venom with toxic activities including anticoagulation and shock induction. Anatomical comparisons of V. komodoensis with V. (Megalania) priscus fossils suggest that the closely related extinct giant was the largest venomous animal to have ever lived.


Assuntos
Extinção Biológica , Lagartos/anatomia & histologia , Lagartos/fisiologia , Comportamento Predatório , Peçonhas , Animais , Bactérias/patogenicidade , Dentição , Lagartos/microbiologia , Crânio/anatomia & histologia , Crânio/fisiologia
8.
Mol Cell Proteomics ; 7(2): 215-46, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17855442

RESUMO

Venom is a key innovation underlying the evolution of advanced snakes (Caenophidia). Despite this, very little is known about venom system structural diversification, toxin recruitment event timings, or toxin molecular evolution. A multidisciplinary approach was used to examine the diversification of the venom system and associated toxins across the full range of the approximately 100 million-year-old advanced snake clade with a particular emphasis upon families that have not secondarily evolved a front-fanged venom system ( approximately 80% of the 2500 species). Analysis of cDNA libraries revealed complex venom transcriptomes containing multiple toxin types including three finger toxins, cobra venom factor, cysteine-rich secretory protein, hyaluronidase, kallikrein, kunitz, lectin, matrix metalloprotease, phospholipase A(2), snake venom metalloprotease/a disintegrin and metalloprotease, and waprin. High levels of sequence diversity were observed, including mutations in structural and functional residues, changes in cysteine spacing, and major deletions/truncations. Morphological analysis comprising gross dissection, histology, and magnetic resonance imaging also demonstrated extensive modification of the venom system architecture in non-front-fanged snakes in contrast to the conserved structure of the venom system within the independently evolved front-fanged elapid or viperid snakes. Further, a reduction in the size and complexity of the venom system was observed in species in which constriction has been secondarily evolved as the preferred method of prey capture or dietary preference has switched from live prey to eggs or to slugs/snails. Investigation of the timing of toxin recruitment events across the entire advanced snake radiation indicates that the evolution of advanced venom systems in three front-fanged lineages is associated with recruitment of new toxin types or explosive diversification of existing toxin types. These results support the role of venom as a key evolutionary innovation in the diversification of advanced snakes and identify a potential role for non-front-fanged venom toxins as a rich source for lead compounds for drug design and development.


Assuntos
Evolução Molecular , Venenos de Serpentes/química , Venenos de Serpentes/metabolismo , Serpentes/metabolismo , Sequência de Aminoácidos , Animais , Teorema de Bayes , Dentição , Regulação da Expressão Gênica , Hialuronoglucosaminidase/química , Calicreínas/química , Lectinas/química , Metaloproteinases da Matriz/química , Dados de Sequência Molecular , Fosfolipases A2/química , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de Proteína , Venenos de Serpentes/genética , Serpentes/anatomia & histologia
9.
Toxins (Basel) ; 12(2)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012831

RESUMO

Slow lorises are enigmatic animal that represent the only venomous primate lineage. Their defensive secretions have received little attention. In this study we determined the full length sequence of the protein secreted by their unique brachial glands. The full length sequences displayed homology to the main allergenic protein present in cat dander. We thus compared the molecular features of the slow loris brachial gland protein and the cat dander allergen protein, showing remarkable similarities between them. Thus we postulate that allergenic proteins play a role in the slow loris defensive arsenal. These results shed light on these neglected, novel animals.


Assuntos
Alérgenos , Gatos , Alérgenos Animais/imunologia , Glicoproteínas , Lorisidae , Toxinas Biológicas , Alérgenos/química , Alérgenos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Glicoproteínas/química , Glicoproteínas/genética , Modelos Moleculares , Homologia de Sequência de Aminoácidos , Toxinas Biológicas/química , Toxinas Biológicas/genética
10.
J Med Chem ; 51(12): 3555-61, 2008 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-18507367

RESUMO

In this study we investigated the structural requirements for inhibition of human salivary alpha-amylase by flavonoids. Four flavonols and three flavones, out of the 19 flavonoids tested, exhibited IC50 values less than 100 microM against human salivary alpha-amylase activity. Structure-activity relationships of these inhibitors by computational ligand docking showed that the inhibitory activity of flavonols and flavones depends on (i) hydrogen bonds between the hydroxyl groups of the polyphenol ligands and the catalytic residues of the binding site and (ii) formation of a conjugated pi-system that stabilizes the interaction with the active site. Our findings show that certain naturally occurring flavonoids act as inhibitors of human alpha-amylase, which makes them promising candidates for controlling the digestion of starch and postprandial glycemia.


Assuntos
Flavonas/química , Flavonóis/química , Modelos Moleculares , Amido/metabolismo , alfa-Amilases/antagonistas & inibidores , Domínio Catalítico , Digestão , Humanos , Ligação de Hidrogênio , Ligantes , Conformação Proteica , Saliva/enzimologia , Relação Estrutura-Atividade , alfa-Amilases/química
11.
Hum Mutat ; 27(9): 926-37, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16917930

RESUMO

Single amino acid substitution is the type of protein alteration most related to human diseases. Current studies seek primarily to distinguish neutral mutations from harmful ones. Very few methods offer an explanation of the final prediction result in terms of the probable structural or functional effect on the protein. In this study, we describe the use of three novel parameters to identify experimentally-verified critical residues of the TP53 protein (p53). The first two parameters make use of a surface clustering method to calculate the protein surface area of highly conserved regions or regions with high nonlocal atomic interaction energy (ANOLEA) score. These parameters help identify important functional regions on the surface of a protein. The last parameter involves the use of a new method for pseudobinding free-energy estimation to specifically probe the importance of residue side-chains to the stability of protein fold. A decision tree was designed to optimally combine these three parameters. The result was compared to the functional data stored in the International Agency for Research on Cancer (IARC) TP53 mutation database. The final prediction achieved a prediction accuracy of 70% and a Matthews correlation coefficient of 0.45. It also showed a high specificity of 91.8%. Mutations in the 85 correctly identified important residues represented 81.7% of the total mutations recorded in the database. In addition, the method was able to correctly assign a probable functional or structural role to the residues. Such information could be critical for the interpretation and prediction of the effect of missense mutations, as it not only provided the fundamental explanation of the observed effect, but also helped design the most appropriate laboratory experiment to verify the prediction results.


Assuntos
Substituição de Aminoácidos , Genes p53 , Mutação de Sentido Incorreto , Proteína Supressora de Tumor p53/química , Sequência de Aminoácidos , Análise por Conglomerados , Sequência Conservada , Cristalografia por Raios X , Bases de Dados de Proteínas , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína/fisiologia , Proteína Supressora de Tumor p53/fisiologia
12.
Nucleic Acids Res ; 32(Web Server issue): W512-6, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15215439

RESUMO

iMolTalk (http://i.moltalk.org) is a new and interactive web server for protein structure analysis. It addresses the need to identify and highlight biochemically important regions in protein structures. As input, the server requires only the four-digit Protein Data Bank (PDB) identifier, of an experimentally determined structure or a structure file in PDB format stemming e.g. from comparative modelling. iMolTalk offers a wide range of implemented tools (i) to extract general information from PDB files, such as generic header information or the sequence derived from three-dimensional co-ordinates; (ii) to map corresponding residues from sequence to structure; (iii) to search for contacts of residues (amino or nucleic acids) or heterogeneous groups to the protein, present cofactors and substrates; and (iv) to identify protein-protein interfaces between chains in a structure. The server provides results as user-friendly two-dimensional graphical representations and in textual format, ideal for further processing. At any time during the analysis, the user can choose, for the following step, from the set of implemented tools or submit his/her own script to the server to extend the functionality of iMolTalk.


Assuntos
Conformação Proteica , Software , Sequência de Aminoácidos , Aspartato Aminotransferase Mitocondrial/química , Internet , Proteínas/química , Interface Usuário-Computador
13.
mBio ; 6(6): e01867-15, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26646013

RESUMO

UNLABELLED: Prokaryotes use type IV secretion systems (T4SSs) to translocate substrates (e.g., nucleoprotein, DNA, and protein) and/or elaborate surface structures (i.e., pili or adhesins). Bacterial genomes may encode multiple T4SSs, e.g., there are three functionally divergent T4SSs in some Bartonella species (vir, vbh, and trw). In a unique case, most rickettsial species encode a T4SS (rvh) enriched with gene duplication. Within single genomes, the evolutionary and functional implications of cross-system interchangeability of analogous T4SS protein components remains poorly understood. To lend insight into cross-system interchangeability, we analyzed the VirB8 family of T4SS channel proteins. Crystal structures of three VirB8 and two TrwG Bartonella proteins revealed highly conserved C-terminal periplasmic domain folds and dimerization interfaces, despite tremendous sequence divergence. This implies remarkable structural constraints for VirB8 components in the assembly of a functional T4SS. VirB8/TrwG heterodimers, determined via bacterial two-hybrid assays and molecular modeling, indicate that differential expression of trw and vir systems is the likely barrier to VirB8-TrwG interchangeability. We also determined the crystal structure of Rickettsia typhi RvhB8-II and modeled its coexpressed divergent paralog RvhB8-I. Remarkably, while RvhB8-I dimerizes and is structurally similar to other VirB8 proteins, the RvhB8-II dimer interface deviates substantially from other VirB8 structures, potentially preventing RvhB8-I/RvhB8-II heterodimerization. For the rvh T4SS, the evolution of divergent VirB8 paralogs implies a functional diversification that is unknown in other T4SSs. Collectively, our data identify two different constraints (spatiotemporal for Bartonella trw and vir T4SSs and structural for rvh T4SSs) that mediate the functionality of multiple divergent T4SSs within a single bacterium. IMPORTANCE: Assembly of multiprotein complexes at the right time and at the right cellular location is a fundamentally important task for any organism. In this respect, bacteria that express multiple analogous type IV secretion systems (T4SSs), each composed of around 12 different components, face an overwhelming complexity. Our work here presents the first structural investigation on factors regulating the maintenance of multiple T4SSs within a single bacterium. The structural data imply that the T4SS-expressing bacteria rely on two strategies to prevent cross-system interchangeability: (i) tight temporal regulation of expression or (ii) rapid diversification of the T4SS components. T4SSs are ideal drug targets provided that no analogous counterparts are known from eukaryotes. Drugs targeting the barriers to cross-system interchangeability (i.e., regulators) could dysregulate the structural and functional independence of discrete systems, potentially creating interference that prevents their efficient coordination throughout bacterial infection.


Assuntos
Bartonella/química , Bartonella/metabolismo , Rickettsia typhi/química , Rickettsia typhi/metabolismo , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato , Técnicas do Sistema de Duplo-Híbrido
14.
BMC Bioinformatics ; 5: 39, 2004 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-15096277

RESUMO

BACKGROUND: Two of the mostly unsolved but increasingly urgent problems for modern biologists are a) to quickly and easily analyse protein structures and b) to comprehensively mine the wealth of information, which is distributed along with the 3D co-ordinates by the Protein Data Bank (PDB). Tools which address this issue need to be highly flexible and powerful but at the same time must be freely available and easy to learn. RESULTS: We present MolTalk, an elaborate programming language, which consists of the programming library libmoltalk implemented in Objective-C and the Smalltalk-based interpreter MolTalk. MolTalk combines the advantages of an easy to learn and programmable procedural scripting with the flexibility and power of a full programming language. An overview of currently available applications of MolTalk is given and with PDBChainSaw one such application is described in more detail. PDBChainSaw is a MolTalk-based parser and information extraction utility of PDB files. Weekly updates of the PDB are synchronised with PDBChainSaw and are available for free download from the MolTalk project page http://www.moltalk.org following the link to PDBChainSaw. For each chain in a protein structure, PDBChainSaw extracts the sequence from its co-ordinates and provides additional information from the PDB-file header section, such as scientific organism, compound name, and EC code. CONCLUSION: MolTalk provides a rich set of methods to analyse and even modify experimentally determined or modelled protein structures. These methods vary in complexity and are thus suitable for beginners and advanced programmers alike. We envision MolTalk to be most valuable in the following applications:1) To analyse protein structures repetitively in large-scale, i.e. to benchmark protein structure prediction methods or to evaluate structural models. The quality of the resulting 3D-models can be assessed by e.g. calculating a Ramachandran-Sasisekharan plot.2) To quickly retrieve information for (a limited number of) macro-molecular structures, i.e. H-bonds, salt bridges, contacts between amino acids and ligands or at the interface between two chains.3) To programme more complex structural bioinformatics software and to implement demanding algorithms through its portability to Objective-C, e.g. iMolTalk.4) To be used as a front end to databases, e.g. PDBChainSaw.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Conformação Proteica , Software , Inteligência Artificial , Biologia Computacional/métodos , Internet , Linguagens de Programação , Design de Software
15.
Hum Mutat ; 23(5): 464-70, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15108278

RESUMO

Missense mutation leading to single amino acid polymorphism (SAP) is the type of mutation most frequently related to human diseases. The Swiss-Prot protein knowledgebase records information on such mutations in various sections of a protein entry, namely in the "feature," "comment," and "reference" fields. To facilitate users in obtaining the most relevant information about each human SAP recorded in the knowledgebase, the Swiss-Prot Variant web pages were created to provide a summary of available sequence information, as well as additional structural information on each variant. In particular, the ModSNP database was set up to store information related to SAPs and to manage the modeling of SAPs onto protein structures via an automatic homology modeling pipeline. Currently, among the 16,566 human SAPs recorded in the Swiss-Prot knowledgebase (release 42.5, 21 November 2003), more than 25% have corresponding 3D-models. Of these variants, 47% are related to disease, 26% are polymorphisms, and 27% are not yet clearly classified. The ModSNP database is updated and the subsequent model construction pipeline is launched with each weekly Swiss-Prot release. Thus, the ModSNP database represents a valuable resource for the structural analysis of protein variation. The Swiss-Prot variant pages are accessible from the NiceProt view of a Swiss-Prot entry on the ExPASy server (www.expasy.org/), via a hyperlink created for the stable and unique identifier FTId of each human SAP.


Assuntos
Substituição de Aminoácidos , Bases de Dados de Proteínas , Mutação de Sentido Incorreto , Homologia Estrutural de Proteína , Bases de Dados de Proteínas/estatística & dados numéricos , Bases de Dados de Proteínas/tendências , Variação Genética , Humanos , Internet , Polimorfismo Genético , Proteínas/química , Proteínas/genética , Análise de Sequência de Proteína
16.
J Proteomics ; 99: 68-83, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24463169

RESUMO

Due to the extreme variation of venom, which consequently results in drastically variable degrees of neutralization by CroFab antivenom, the management and treatment of envenoming by Crotalus oreganus helleri (the Southern Pacific Rattlesnake), one of the most medically significant snake species in all of North America, has been a clinician's nightmare. This snake has also been the subject of sensational news stories regarding supposed rapid (within the last few decades) evolution of its venom. This research demonstrates for the first time that variable evolutionary selection pressures sculpt the intraspecific molecular diversity of venom components in C. o. helleri. We show that myotoxic ß-defensin peptides (aka: crotamines/small basic myotoxic peptides) are secreted in large amounts by all populations. However, the mature toxin-encoding nucleotide regions evolve under the constraints of negative selection, likely as a result of their non-specific mode of action which doesn't enforce them to follow the regime of the classic predator-prey chemical arms race. The hemorrhagic and tissue destroying snake venom metalloproteinases (SVMPs) were secreted in larger amounts by the Catalina Island and Phelan rattlesnake populations, in moderate amounts in the Loma Linda population and in only trace levels by the Idyllwild population. Only the Idyllwild population in the San Jacinto Mountains contained potent presynaptic neurotoxic phospholipase A2 complex characteristic of Mohave Rattlesnake (Crotalus scutulatus) and Neotropical Rattlesnake (Crotalus durissus terrificus). The derived heterodimeric lectin toxins characteristic of viper venoms, which exhibit a diversity of biological activities, including anticoagulation, agonism/antagonism of platelet activation, or procoagulation, appear to have evolved under extremely variable selection pressures. While most lectin α- and ß-chains evolved rapidly under the influence of positive Darwinian selection, the ß-chain lectin of the Catalina Island population appears to have evolved under the constraint of negative selection. Both lectin chains were conspicuously absent in both the proteomics and transcriptomics of the Idyllwild population. Thus, we not only highlight the tremendous biochemical diversity in C. o. helleri's venom-arsenal, but we also show that they experience remarkably variable strengths of evolutionary selection pressures, within each toxin class among populations and among toxin classes within each population. The mapping of geographical venom variation not only provides additional information regarding venom evolution, but also has direct medical implications by allowing prediction of the clinical effects of rattlesnake bites from different regions. Such information, however, also points to these highly variable venoms as being a rich source of novel toxins which may ultimately prove to be useful in drug design and development. BIOLOGICAL SIGNIFICANCE: These results have direct implications for the treatment of envenomed patients. The variable venom profile of Crotalus oreganus helleri underscores the biodiscovery potential of novel snake venoms.


Assuntos
Biodiversidade , Venenos de Crotalídeos , Crotalus , Evolução Molecular , Animais , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/metabolismo , Crotalus/genética , Crotalus/metabolismo , Especificidade da Espécie
18.
Toxins (Basel) ; 5(11): 1948-64, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24169588

RESUMO

Although snake venoms have been the subject of intense research, primarily because of their tremendous potential as a bioresource for design and development of therapeutic compounds, some specific groups of snakes, such as the genus Atractaspis, have been completely neglected. To date only limited number of toxins, such as sarafotoxins have been well characterized from this lineage. In order to investigate the molecular diversity of venom from Atractaspis aterrima-the slender burrowing asp, we utilized a high-throughput transcriptomic approach completed with an original bioinformatics analysis pipeline. Surprisingly, we found that Sarafotoxins do not constitute the major ingredient of the transcriptomic cocktail; rather a large number of previously well-characterized snake venom-components were identified. Notably, we recovered a large diversity of three-finger toxins (3FTxs), which were found to have evolved under the significant influence of positive selection. From the normalized and non-normalized transcriptome libraries, we were able to evaluate the relative abundance of the different toxin groups, uncover rare transcripts, and gain new insight into the transcriptomic machinery. In addition to previously characterized toxin families, we were able to detect numerous highly-transcribed compounds that possess all the key features of venom-components and may constitute new classes of toxins.


Assuntos
Evolução Molecular , Venenos de Serpentes/genética , Venenos de Serpentes/isolamento & purificação , Serpentes , Sequência de Aminoácidos , Animais , Biologia Computacional , DNA Complementar/genética , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Conformação Proteica , Seleção Genética , Transcriptoma
19.
Toxicon ; 59(7-8): 696-708, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22465490

RESUMO

Venom proteins are added to reptile venoms through duplication of a body protein gene, with the duplicate tissue-specifically expressed in the venom gland. Molecular scaffolds are recruited from a wide range of tissues and with a similar level of diversity of ancestral activity. Transcriptome studies have proven an effective and efficient tool for the discovery of novel toxin scaffolds. In this study, we applied venom gland transcriptomics to a wide taxonomical diversity of advanced snakes and recovered transcripts encoding three novel protein scaffold types lacking sequence homology to any previously characterised snake toxin type: lipocalin, phospholipase A2 (type IIE) and vitelline membrane outer layer protein. In addition, the first snake maxillary venom gland isoforms were sequenced of ribonuclease, which was only recently sequenced from lizard mandibular venom glands. Further, novel isoforms were also recovered for the only recently characterised veficolin toxin class also shared between lizard and snake venoms. The additional complexity of snake venoms has important implications not only for understanding their molecular evolution, but also reinforces the tremendous importance of venoms as a diverse bio-resource.


Assuntos
Venenos de Serpentes/química , Venenos de Serpentes/classificação , Venenos de Serpentes/genética , Serpentes/metabolismo , Transcriptoma , Sequência de Aminoácidos , Animais , Evolução Molecular , Biblioteca Gênica , Lipocalinas/análise , Lipocalinas/química , Lipocalinas/genética , Lagartos/metabolismo , Dados de Sequência Molecular , Fosfolipases A2/análise , Fosfolipases A2/química , Fosfolipases A2/genética , Filogenia , Conformação Proteica , Ribonucleases/metabolismo , Glândulas Salivares/metabolismo
20.
EMBO J ; 25(3): 457-66, 2006 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-16424900

RESUMO

The bacterial toxin aerolysin kills cells by forming heptameric channels, of unknown structure, in the plasma membrane. Using disulfide trapping and cysteine scanning mutagenesis coupled to thiol-specific labeling on lipid bilayers, we identify a loop that lines the channel. This loop has an alternating pattern of charged and uncharged residues, suggesting that the transmembrane region has a beta-barrel configuration, as observed for Staphylococcal alpha-toxin. Surprisingly, we found that the turn of the beta-hairpin is composed of a stretch of five hydrophobic residues. We show that this hydrophobic turn drives membrane insertion of the developing channel and propose that, once the lipid bilayer has been crossed, it folds back parallel to the plane of the membrane in a rivet-like fashion. This rivet-like conformation was modeled and sequence alignments suggest that such channel riveting may operate for many other pore-forming toxins.


Assuntos
Toxinas Bacterianas/química , Membrana Celular/química , Modelos Moleculares , Sequência de Aminoácidos , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Cricetinae , Cisteína/química , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Dados de Sequência Molecular , Mutação , Proteínas Citotóxicas Formadoras de Poros , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa