Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Insects ; 15(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667395

RESUMO

In Mississippi, the Pentatomidae complex infesting soybean is primarily composed of Euschistus servus, Nezara viridula, Chinavia hilaris, and Piezodorus guildinii. This study employed spray bioassays to evaluate the susceptibilities of these stink bugs to seven commonly used formulated insecticides: oxamyl, acephate, bifenthrin, λ-cyhalothrin, imidacloprid, thiamethoxam, and sulfoxaflor. Stinks bugs were collected from soybeans in Leland, MS, USA during 2022 and 2023, as well as from wild host plants in Clarksdale, MS. There was no significant difference in the susceptibility of C. hilaris to seven insecticides between two years, whereas P. guildinii showed slightly increased susceptibility to neonicotinoids in 2023. Among all four stink bug species, susceptibility in 2022 was ranked as P. guildinii ≤ C. hilaris ≈ N. viridula, while in 2023, it was ranked as P. guildinii ≤ C. hilaris ≤ E. Servus. Additionally, populations of E. servus and P. guildinii collected from Clarksdale exhibited high tolerance to pyrethroids and neonicotinoids. Moreover, populations of E. servus and P. guildinii from SIMRU-2022 and Clarksdale-2023 showed elevated esterase and cytochrome P450 activity, respectively. These findings from spray bioassays and enzyme activity analyses provide a baseline for monitoring insecticide resistance in Pentatomidae and can guide insecticide resistance management strategies for Mississippi soybean.

2.
Insects ; 14(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37754729

RESUMO

Over the past several decades, the extensive use of pyrethroids has led to the development of resistance in many insect populations, including the economically damaging pest tarnished plant bug (TPB), Lygus lineolaris, on cotton. To manage TPB resistance, several commercially formulated pyrethroid-containing binary mixtures, in combination with neonicotinoids or avermectin are recommended for TPB control and resistance management in the mid-South USA. This study aimed to evaluate the toxicity and resistance risks of four formulated pyrethroid-containing binary mixtures (Endigo, Leverage, Athena, and Hero) on one susceptible and two resistant TPB populations, which were field-collected in July (Field-R1) and October (Field-R2), respectively. Based on LC50 values, both resistant TPB populations displayed variable tolerance to the four binary mixtures, with Hero showing the highest resistance and Athena the lowest. Notably, the Field-R2 exhibited 1.5-3-fold higher resistance compared to the Field-R1 for all four binary insecticides. Moreover, both resistant TPB populations demonstrated significantly higher resistance ratios towards Hero and Leverage compared to their corresponding individual pyrethroid, while Endigo and Athena showed similar or lower resistance. This study also utilized the calculated additive index (AI) and co-toxicity coefficient (CTC) analysis, which revealed that the two individual components in Leverage exhibited antagonist effects against the two resistant TPB populations. In contrast, the two individual components in Endigo, Hero, and Athena displayed synergistic interactions. Considering that Hero is a mixture of two pyrethroids that can enhance the development of TPB resistance, our findings suggest that Endigo and Athena are likely superior products for slowing down resistance development in TPB populations. This study provides valuable insight for selecting the most effective mixtures to achieve better TPB control through synergistic toxicity analysis, while simultaneously reducing economic and environmental risks associated with resistance development in the insect pest.

3.
Insect Sci ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850504

RESUMO

Due to rapidly developed resistance, pest management relies less on pyrethroids to control economically damaging infestations of the tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois) in cotton fields of Mississippi. Yet, pyrethroid resistance remains prevalent in TPB populations. This study assessed the resistance levels in adult TPB to six common pyrethroids and acephate. Resistant TBPs were collected from wild host plants in late October after harvest in the Mississippi Delta region of the United States. Based on LC50 values, the field-resistant TPBs displayed higher resistance to permethrin, esfenvalerate, and bifenthrin (approximately 30 fold) and moderate resistance to λ-cyhalothrin, ß-cyfluthrin, ζ-cypermethrin, and acephate (approximately 15 fold). Further investigations showed that the inhibitors of three detoxification enzyme, triphenyl phosphate (TPP), diethyl maleate (DEM), and piperonyl butoxide (PBO) had synergistic effects on permethrin, λ-cyhalothrin, and bifenthrin in resistant TPBs. Furthermore, elevated esterase, GST, and P450 activities were significantly expressed in field-resistant TPBs. Additionally, GST and esterase were reduced after 48 h exposure to certain pyrethroids at LC50 dose. The synergistic and biochemical assays consistently indicated that P450 and esterase were involved in pyrethroid detoxification in TPBs. This study provides valuable information for the continued use of pyrethroids and acephate in controlling TPBs in cotton fields in the Mississippi Delta region of the United States.

4.
ACS Nano ; 17(6): 5296-5305, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36921214

RESUMO

A combination of synchrotron-based elemental analysis and acute toxicity tests was used to investigate the biodistribution and adverse effects in Daphnia magna exposed to uranium nanoparticle (UNP, 3-5 nm) suspensions or to uranium reference (Uref) solutions. Speciation analysis revealed similar size distributions between exposures, and toxicity tests showed comparable acute effects (UNP LC50: 402 µg L-1 [336-484], Uref LC50: 268 µg L-1 [229-315]). However, the uranium body burden was 3- to 5-fold greater in UNP-exposed daphnids, and analysis of survival as a function of body burden revealed a ∼5-fold higher specific toxicity from the Uref exposure. High-resolution X-ray fluorescence elemental maps of intact, whole daphnids from sublethal, acute exposures of both treatments revealed high uranium accumulation onto the gills (epipodites) as well as within the hepatic ceca and the intestinal lumen. Uranium uptake into the hemolymph circulatory system was inferred from signals observed in organs such as the heart and the maxillary gland. The substantial uptake in the maxillary gland and the associated nephridium suggests that these organs play a role in uranium removal from the hemolymph and subsequent excretion. Uranium was also observed associated with the embryos and the remnants of the chorion, suggesting uptake in the offspring. The identification of target organs and tissues is of major importance to the understanding of uranium and UNP toxicity and exposure characterization that should ultimately contribute to reducing uncertainties in related environmental impact and risk assessments.


Assuntos
Urânio , Poluentes Químicos da Água , Animais , Raios X , Daphnia/química , Urânio/toxicidade , Síncrotrons , Distribuição Tecidual , Toxicocinética , Imagem Óptica , Poluentes Químicos da Água/química
5.
Aquat Toxicol ; 235: 105836, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33932687

RESUMO

The importance of incorporating kinetic approaches in order to gain information on underlying physiological processes explaining species sensitivity to environmental stressors has been highlighted in recent years. Uranium is present in the aquatic environment worldwide due to naturally occurring and anthropogenic sources, posing a potential risk to freshwater taxa in contaminated areas. Although literature shows that organisms vary widely with respect to susceptibility to U, information on toxicokinetics that may explain the variation in toxicodynamic responses is scarce. In the present work, Daphnia magna were exposed to a range of environmentally relevant U concentrations (0 - 200 µg L-1) followed by a 48 h depuration phase to obtain information on toxicokinetic parameters and toxic responses. Results showed time-dependent and concentration-dependent uptake of U in daphnia (ku = 1.2 - 3.8 L g-1 day-1) with bioconcentration factors (BCFs) ranging from 1,641 - 5,204 (L kg-1), a high depuration rate constant (ke = 0.75 day-1), the majority of U tightly bound to the exoskeleton (~ 50 - 60%) and maternal transfer of U (1 - 7%). Effects on growth, survivorship and major ion homeostasis strongly correlated with exposure (external or internal) and toxicokinetic parameters (uptake rates, ku, BCF), indicating that uptake and internalization drives U toxicity responses in D. magna. Interference from U with ion uptake pathways and homeostasis was highlighted by the alteration in whole-body ion concentrations, their ionic ratios (e.g., Ca:Mg and Na:K) and the increased expression in some ion regulating genes. Together, this work adds to the limited data examining U kinetics in freshwater taxa and, in addition, provides perspective on factors influencing stress, toxicity and adaptive response to environmental contaminants such as uranium.


Assuntos
Daphnia/fisiologia , Urânio/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Transporte Biológico , Daphnia/metabolismo , Cinética , Alimentos Marinhos , Toxicocinética , Urânio/toxicidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-30509915

RESUMO

Elevated major ion concentrations in streams are commonly observed as a consequence of resource extraction, de-icing and other anthropogenic activities. Ecologists report biodiversity losses associated with increasing salinity, with mayflies typically being highly responsive to increases of different major ions. In this study, we evaluated the performance of the mayfly Neocloeon triangulifer reared for its entire larval phase in a gradient of sulfate concentrations. Two natural waters were amended with SO4 as a blend of CaSO4 and MgSO4 and exposures ranged from 5 to 1500 mg l-1 SO4. Survival (per cent successful emergence to the subimago stage) was significantly reduced at the highest SO4 concentration in both waters, while development was significantly delayed at 667 mg l-1 SO4 Final sub-adult body weights were consistent across treatments, except at the highest treatment concentration. Despite evidence for sulfate uptake rates increasing with exposure concentrations and not being saturated at even extremely high SO4 concentrations, total body sulfur changed little in subimagos. Together, these results suggest that elevated SO4 imposes an energetic demand associated with maintaining homeostasis that is manifested primarily as reduced growth rates and associated developmental delays. We identified two genes related to sulfate transport in N. trianguliferThis article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.


Assuntos
Ephemeroptera/efeitos dos fármacos , Sulfatos/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Animais , Relação Dose-Resposta a Droga , Ephemeroptera/crescimento & desenvolvimento , Ephemeroptera/fisiologia , Água Doce/química , Transporte de Íons/fisiologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/fisiologia
7.
Aquat Toxicol ; 190: 62-69, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28692867

RESUMO

The salinization of freshwater ecosystems is emerging as a major ecological issue. Several anthropogenic causes of salinization (e.g. surface coal mining, hydro-fracking, road de-icing, irrigation of arid lands, etc.) are associated with biodiversity losses in freshwater ecosystems. Because insects tend to dominate freshwater ecology, it is important that we develop a better understanding of how and why different species respond to salinity matrices dominated by different major ions. This study builds upon previous work demonstrating that major ion toxicity to the mayfly Neocloeon triangulifer was apparently due to the ionic composition of water rather than specific conductance. Synthetic waters with low Ca:Mg ratios and high SO4:Na ratios produced toxicity, whereas waters with higher Ca:Mg ratios and lower SO4:Na ratios were not toxic to mayflies at comparable conductivities. Here we used a radiotracer approach to show that Mg did not competitively exclude Ca uptake at environmentally realistic ratios in 4 aquatic insect species. We characterized SO4 uptake kinetics in 5 mayflies and assessed the influence of different ions on SO4 uptake. Dual label experiments show an inverse relationship between SO4 and Na transport rates as SO4 was held constant and Na was increased, suggesting that Na (and not Cl or HCO3) is antagonistic to SO4 transport. Based on this observation, we tested the hypothesis that increasing Na would protect against SO4 induced toxicity in a Na-dependent manner. Increasing Na from 0.7 to 10.9mM improved 96-h survivorship associated with 20.8mM SO4 from 44% to 73% in a concentration dependent manner. However, when Na reached 21.8mM, survivorship decreased to 16%, suggesting that other interactive effects of major ions caused toxicity under those conditions. Thus, the combination of elevated sulfate and low sodium commonly observed in streams affected by mountaintop coal mining has the potential to cause toxicity in sensitive aquatic insects. Overall, it is important that we develop a better understanding of major ion toxicity to effectively mitigate and protect freshwater biodiversity from salinization.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Insetos/efeitos dos fármacos , Sódio/farmacologia , Sulfatos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/metabolismo , Ecossistema , Água Doce/química , Insetos/metabolismo , Transporte de Íons/efeitos dos fármacos , Cinética , Salinidade , Sódio/análise , Sulfatos/metabolismo , Poluentes Químicos da Água/metabolismo
8.
Environ Toxicol Chem ; 36(11): 2991-2996, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28543800

RESUMO

To determine whether the bioavailability of trace elements derived from coal ash leachates varies with the geochemical conditions associated with their formation, we quantified periphyton bioaccumulation and subsequent trophic transfer to the mayfly Neocloeon triangulifer. Oxic ash incubations favored periphyton uptake of arsenic, selenium, strontium, and manganese, whereas anoxic incubations favored periphyton uptake of uranium. Mayfly enrichment was strongest for selenium, whereas biodilution was observed for strontium, uranium, and arsenic. Environ Toxicol Chem 2017;36:2991-2996. © 2017 SETAC.


Assuntos
Cinza de Carvão/química , Cadeia Alimentar , Perifíton , Oligoelementos/análise , Animais , Reatores Biológicos , Ephemeroptera/metabolismo , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa