Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Addict Biol ; 24(5): 886-897, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29984872

RESUMO

Galanin is a neuropeptide which mediates its effects via three G-protein coupled receptors (GAL1-3 ). Administration of a GAL3 antagonist reduces alcohol self-administration in animal models while allelic variation in the GAL3 gene has been associated with an increased risk of alcohol use disorders in diverse human populations. Based on the association of GAL3 with alcoholism, we sought to characterize drug-seeking behavior in GAL3 -deficient mice for the first time. In the two-bottle free choice paradigm, GAL3 -KO mice consistently showed a significantly increased preference for ethanol over water when compared to wildtype littermates. Furthermore, male GAL3 -KO mice displayed significantly increased responding for ethanol under operant conditions. These differences in alcohol seeking behavior in GAL3 -KO mice did not result from altered ethanol metabolism. In contrast to ethanol, GAL3 -KO mice exhibited similar preference for saccharin and sucrose over water, and a similar preference for a high fat diet over a low fat diet as wildtype littermates. No differences in cognitive and locomotor behaviors were observed in GAL3 -KO mice to account for increased alcohol seeking behavior. Overall, these findings suggest genetic ablation of GAL3 in mice increases alcohol consumption.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Comportamento de Procura de Droga/efeitos dos fármacos , Receptor Tipo 3 de Galanina/deficiência , Animais , Apomorfina/farmacologia , Depressores do Sistema Nervoso Central/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante , Maleato de Dizocilpina/farmacologia , Agonistas de Dopamina/farmacologia , Emoções/efeitos dos fármacos , Etanol/metabolismo , Etanol/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Medo/efeitos dos fármacos , Feminino , Hipercinese/fisiopatologia , Relações Interpessoais , Masculino , Aprendizagem em Labirinto , Metanfetamina/farmacologia , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Fenótipo , Reflexo de Sobressalto/efeitos dos fármacos , Autoadministração , Filtro Sensorial/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos
2.
Neurosci Biobehav Rev ; 110: 133-149, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-29949733

RESUMO

Addiction is a chronic, relapsing disorder characterised by the use of a substance or act to the point of compulsion. There are a number of medical treatments available for the intervention of these disorders, however, the effectiveness of current therapeutics is far from adequate. Neuropeptides are known to modulate addictive behaviours and may provide new therapeutic targets for the treatment of substance abuse. Accumulating evidence has suggested galanin as a potential important neuromodulator of addiction. Both human genetic studies and animal models have highlighted a role for this neuropeptide in affective disorders, as well as alcohol, nicotine, and opiate dependence. This review highlights the role of galanin and other primary neuropeptides implicated in modulating addiction to different drugs of abuse. Orexin, relaxin-3, corticotrophin-releasing factor, dynorphin and enkephalin, are also discussed given their involvement in mediating reward-seeking behaviour.


Assuntos
Comportamento Aditivo/metabolismo , Galanina/metabolismo , Transtornos do Humor/psicologia , Neuropeptídeos/metabolismo , Transtornos Relacionados ao Uso de Substâncias/psicologia , Animais , Hormônio Liberador da Corticotropina/metabolismo , Humanos , Transtornos do Humor/tratamento farmacológico
3.
JAMA Neurol ; 75(6): 681-689, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29507931

RESUMO

Importance: Neuroinflammation appears to be a key modulator of disease progression in amyotrophic lateral sclerosis (ALS) and thereby a promising therapeutic target. The CD4+Foxp3+ regulatory T-cells (Tregs) infiltrating into the central nervous system suppress neuroinflammation and promote the activation of neuroprotective microglia in mouse models of ALS. To our knowledge, the therapeutic association of host Treg expansion with ALS progression has not been studied in vivo. Objective: To assess the role of Tregs in regulating the pathophysiology of ALS in humans and the therapeutic outcome of increasing Treg activity in a mouse model of the disease. Design, Setting, and Participants: This prospective multicenter human and animal study was performed in hospitals, outpatient clinics, and research institutes. Clinical and function assessment, as well as immunological studies, were undertaken in 33 patients with sporadic ALS, and results were compared with 38 healthy control participants who were consecutively recruited from the multidisciplinary ALS clinic at Westmead Hospital between February 1, 2013, and December 31, 2014. All data analysis on patients with ALS was undertaken between January 2015 and December 2016. Subsequently, we implemented a novel approach to amplify the endogenous Treg population using peripheral injections of interleukin 2/interleukin 2 monoclonal antibody complexes (IL-2c) in transgenic mice that expressed mutant superoxide dismutase 1 (SOD1), a gene associated with motor neuron degeneration. Main Outcomes and Measures: In patients with ALS, Treg levels were determined and then correlated with disease progression. Circulating T-cell populations, motor neuron size, glial cell activation, and T-cell and microglial gene expression in spinal cords were determined in SOD1G93A mice, as well as the association of Treg amplification with disease onset and survival time in mice. Results: The cohort of patients with ALS included 24 male patients and 9 female patients (mean [SD] age at assessment, 58.9 [10.9] years). There was an inverse correlation between total Treg levels (including the effector CD45RO+ subset) and rate of disease progression (R = -0.40, P = .002). Expansion of the effector Treg population in the SOD1G93A mice was associated with a significant slowing of disease progression, which was accompanied by an increase in survival time (IL-2c-treated mice: mean [SD], 160.6 [10.8] days; control mice: mean [SD], 144.9 [10.6] days; P = .003). Importantly, Treg expansion was associated with preserved motor neuron soma size and marked suppression of astrocytic and microglial immunoreactivity in the spinal cords of SOD1G93A mice, as well as elevated neurotrophic factor gene expression in spinal cord and peripheral nerves. Conclusions and Relevance: These findings establish a neuroprotective effect of Tregs, possibly mediated by suppression of toxic neuroinflammation in the central nervous system. Strategies aimed at enhancing the Treg population and neuroprotective activity from the periphery may prove therapeutically useful for patients with ALS.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/genética , Modelos Animais de Doenças , Progressão da Doença , Linfócitos T Reguladores/metabolismo , Idoso , Esclerose Lateral Amiotrófica/diagnóstico , Animais , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Estudos Prospectivos , Superóxido Dismutase/genética
4.
Neuropharmacology ; 118: 1-12, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28274821

RESUMO

The neuropeptide, galanin, is widely expressed in the central and peripheral nervous systems and is involved in a range of different functions including nociception, neurogenesis, hormone release, reproduction, cognitive function and appetite. Given the overlap between galanin expression and reward circuitry in the brain, galanin has been targeted for alcohol use disorder (AUD) and opioid dependency. Furthermore, the galanin-3 receptor (GAL3) specifically regulates emotional states and plays a role in motivation, reward and drug-seeking behaviour. We have previously shown that the GAL3 antagonist, SNAP 37889, reduces ethanol self-administration and cue-induced re-instatement in alcohol-preferring (iP) rats with no alterations in locomotor activity or anxiety-like behaviour. The aim of this study was to investigate whether SNAP 37889 reduces binge drinking and/or self-administration of morphine in mice. Using the Scheduled High Alcohol Consumption (SHAC) procedure, SNAP 37889 (30 mg/kg) treated mice drank significantly less ethanol, sucrose and saccharin than vehicle treated mice. Using an operant paradigm, SNAP 37889 reduced morphine self-administration but failed to impact cue-induced relapse-like behaviour. SNAP 37889 had no significant effect on locomotor activity, motor co-ordination, anxiety, nor was SNAP 37889 itself positively reinforcing. Liver assays showed that there was no alteration in the rate of hepatic ethanol metabolism between SNAP 37889 and vehicle treated mice suggesting that the reduction in ethanol intake via SNAP 37889 is due to a central effect of GAL3 signalling. This study implicates the GAL3 receptor in consummatory drive which may have wider implications for the treatment of different addictions.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Comportamento de Procura de Droga/efeitos dos fármacos , Indóis/uso terapêutico , Morfina/administração & dosagem , Entorpecentes/administração & dosagem , Receptor Tipo 3 de Galanina/antagonistas & inibidores , Adaptação Ocular/efeitos dos fármacos , Álcool Desidrogenase/metabolismo , Animais , Condicionamento Operante/efeitos dos fármacos , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Indóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor Tipo 3 de Galanina/metabolismo , Esquema de Reforço , Sacarina/administração & dosagem , Sacarina/metabolismo , Autoadministração , Sacarose/administração & dosagem , Sacarose/metabolismo , Fatores de Tempo
5.
MethodsX ; 1: 212-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26150955

RESUMO

Research into the galanin-3 (GAL3) receptor has many challenges, including the lack of commercially available selective ligands. While the identification of non-peptidergic GAL3 receptor-selective antagonists, 1-phenyl-3-[3-(trifluoromethyl)phenyl]iminoindol-2-one (SNAP 37889) and 1-[3-(2-pyrrolidin-1-ylethoxy)phenyl]-3-[3-(trifluoromethyl)phenyl]iminoindol-2-one (SNAP 398299) have implicated a role for GAL3 receptors in anxiety, depression and drug-seeking behaviour, a major limitation of their use is poor aqueous solubility. Previously we have used 5% dimethylsulfoxide (DMSO) with 1% hydroxypropylmethyl cellulose in saline to dissolve SNAP 37889 for intraperitoneal (i.p.) injections of rats; however this produced a micro-suspension that was not ideal. The injectable formulation of SNAP 37889 was improved as follows:•30% (w/v) Kolliphor(®) HS 15 (Solutol HS(®) 15) and sodium phosphate buffer (0.01 M, pH 7.4) were used as vehicles.•A smooth glass mortar and pestle was used to triturate the Kolliphor(®) HS 15 and SNAP 37889 into a paste before addition to the sodium phosphate buffer at room temperature (RT).•The resulting mixture was vortexed until the paste was fully dissolved and the microemulsion was allowed to sit for 20 min to allow air bubbles to coalesce.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa