RESUMO
BACKGROUND: We report a genomic surveillance of SARS-CoV-2 lineages circulating in Paraná, southern Brazil, from March 2020 to April 2021. Our analysis, based on 333 genomes, revealed that the first variants detected in the state of Paraná in March 2020 were the B.1.1.33 and B.1.1.28 variants. The variants B.1.1.28 and B.1.1.33 were predominant throughout 2020 until the introduction of the variant P.2 in August 2020 and a variant of concern (VOC), Gamma (P.1), in January 2021. The VOC Gamma, a ramification of the B.1.1.28 lineage first detected in Manaus (northern Brazil), has grown rapidly since December 2020 and was thought to be responsible for the deadly second wave of COVID-19 throughout Brazil. METHODS: The 333 genomic sequences of SARS-CoV-2 from March 2020 to April 2021 were generated as part of the genomic surveillance carried out by Fiocruz in Brazil Genomahcov Fiocruz. SARS-CoV-2 sequencing was performed using representative samples from all geographic areas of Paraná. Phylogenetic analyses were performed using the 333 genomes also included other SARS-CoV-2 genomes from the state of Paraná and other states in Brazil that were deposited in the GISAID. In addition, the time-scaled phylogenetic tree was constructed with up to 3 random sequences of the Gamma variant from each state in Brazil in each month of 2021. In this analysis we also added the sequences identified as the B.1.1.28 lineage of the Amazonas state and and the Gamma-like-II (P.1-like-II) lineage identified in different regions of Brazil. RESULTS: Phylogenetic analyses of the SARS-CoV-2 genomes that were previously classified as the VOC Gamma lineage by WHO/PANGO showed that some genomes from February to April 2021 branched in a monophyletic clade and that these samples grouped together with genomes recently described with the lineage Gamma-like-II. Additionally, a new mutation (E661D) in the spike (S) protein has been identified in nearly 10% of the genomes classified as the VOC Gamma from Paraná in March and April 2021.Finally, we analyzed the correlation between the lineage and the Gamma variant frequency, age group (patients younger or older than 60 years old) and the clinical data of 86 cases from the state of Paraná. CONCLUSIONS: Our results provided a reliable picture of the evolution of the SARS-CoV-2 pandemic in the state of Paraná characterized by the dominance of the Gamma strain, as well as a high frequencies of the Gamma-like-II lineage and the S:E661D mutation. Epidemiological and genomic surveillance efforts should be continued to unveil the biological relevance of the novel mutations detected in the VOC Gamma in Paraná.
Assuntos
COVID-19/virologia , SARS-CoV-2 , Brasil/epidemiologia , COVID-19/epidemiologia , Surtos de Doenças , Humanos , Pessoa de Meia-Idade , Mutação , Filogenia , Vigilância da População , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Sequenciamento Completo do GenomaRESUMO
The karyotypes of the family Parodontidae consist of 2n = 54 chromosomes. The main chromosomal evolutionary changes of its species are attributed to chromosome rearrangements in repetitive DNA regions in their genomes. Physical mapping of the H1 and H4 histones was performed in 7 Parodontidae species to analyze the chromosome rearrangements involved in karyotype diversification in the group. In parallel, the observation of a partial sequence of an endogenous retrovirus (ERV) retrotransposon in the H1 histone sequence was evaluated to verify molecular co-option of the transposable elements (TEs) and to assess paralogous sequence dispersion in the karyotypes. Six of the studied species had an interstitial histone gene cluster in the short arm of the autosomal pair 13. Besides this interstitial cluster, in Apareiodon davisi, a probable further site was detected in the terminal region of the long arm in the same chromosome pair. The H1/H4 clusters in Parodon cf. pongoensis were located in the smallest chromosomes (pair 20). In addition, scattered H1 signals were observed on the chromosomes in all species. The H1 sequence showed an ERV in the open reading frame (ORF), and the scattered H1 signals on the chromosomes were attributed to the ERV's location. The H4 sequence had no similarity to the TEs and displayed no dispersed signals. Furthermore, the degeneration of the inner ERV in the H1 sequence (which overlapped a stretch of the H1 ORF) was discussed regarding the likelihood of molecular co-option of this retroelement in histone gene function in Parodontidae.
Assuntos
Caraciformes/genética , Mapeamento Cromossômico/veterinária , Histonas/genética , Animais , Caraciformes/metabolismo , Feminino , Proteínas de Peixes/genética , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Retroelementos , Análise de Sequência de DNA/veterináriaRESUMO
Strawberry is the most studied nonclimacteric fruit for understanding the role ethylene has in ripening regulation. However, previous studies on the effects of ethylene on strawberry ripening were conducted with detached fruit. Thus, the aim of this work was to determine the effect of ethylene and the ethylene-action inhibitor 1-methylcyclopropene (1-MCP) applied at different developmental stages on important physical-chemical attributes of ripe 'Albion' strawberry. Fruit at four developmental stages that remained attached to the plant were dipped in one of three treatment solutions (Ethephon, 1-methylcyclopropene, and water), plus one absolute control that received no dip. Following treatment, when immature fruit were fully red or 24 h after treatment for red-treated fruit, strawberry fruit were assessed for physicochemical properties (mass, length, diameter, firmness, color, titratable acidity, soluble solids, pH, total phenolics, sugar, organic acid, amino acid, and volatile composition). The days following treatment required for fruit to ripen were also recorded. Treatments did not affect the rate of ripening nor fruit color, titratable acidity, pH, soluble solids, total phenolics, sugars, or organic acids of ripe fruit. Ethephon affected fruit mass, diameter, length, firmness, anthocyanins, amino acids, and volatiles, but these effects were dependent on fruit developmental stage at which the treatment was applied. When green fruit were treated with ethephon, ripe fruit had larger diameter and mass. Ethephon treatment of white fruit resulted in ripe fruit having greater anthocyanin content. Treatment of pink fruit resulted in ripe fruit having smaller diameter, length, and mass and greater firmness. Treatment of red fruit with ethephon altered fruit volatile composition, increasing concentrations of ethyl- and acetate-esters, which were reduced by the 1-MCP treatment. Ethephon treatment increased concentrations of 11 of the 19 free amino acids measured in ripe fruit with treatment of green and white fruit having the greatest effect. A total of 41 volatile compounds had significant correlations with 14 amino acids. While ethylene did not stimulate typical ripening of strawberry fruit, it does appear to alter fruit development and metabolism. The physiological effects of ethylene on strawberry fruit appear to depend on the developmental stage of the fruit.