Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Cell ; 175(3): 890-890.e1, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340048

RESUMO

Genetic ataxias are a clinically important group of disabling, mostly neurodegenerative, diseases of the cerebellum. This SnapShot shows that the vast majority of established monogenic causes of dominant and recessive ataxias can be captured by a limited number of affected cellular components and biological processes in the cerebellum. To view this SnapShot, open or download the PDF.


Assuntos
Ataxia Cerebelar/genética , Animais , Ataxia Cerebelar/metabolismo , Reparo do DNA , Humanos , Transporte de Íons , Células de Purkinje/metabolismo
2.
Nucleic Acids Res ; 52(11): 6201-6219, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38597673

RESUMO

Genes encoding the KDM5 family of transcriptional regulators are disrupted in individuals with intellectual disability (ID). To understand the link between KDM5 and ID, we characterized five Drosophila strains harboring missense alleles analogous to those observed in patients. These alleles disrupted neuroanatomical development, cognition and other behaviors, and displayed a transcriptional signature characterized by the downregulation of many ribosomal protein genes. A similar transcriptional profile was observed in KDM5C knockout iPSC-induced human glutamatergic neurons, suggesting an evolutionarily conserved role for KDM5 proteins in regulating this class of gene. In Drosophila, reducing KDM5 changed neuronal ribosome composition, lowered the translation efficiency of mRNAs required for mitochondrial function, and altered mitochondrial metabolism. These data highlight the cellular consequences of altered KDM5-regulated transcriptional programs that could contribute to cognitive and behavioral phenotypes. Moreover, they suggest that KDM5 may be part of a broader network of proteins that influence cognition by regulating protein synthesis.


Assuntos
Proteínas de Drosophila , Neurônios , Proteínas Ribossômicas , Animais , Humanos , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Neurônios/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Ribossomos/genética , Ativação Transcricional
3.
PLoS Genet ; 18(5): e1010159, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500025

RESUMO

O-GlcNAcylation is a reversible co-/post-translational modification involved in a multitude of cellular processes. The addition and removal of the O-GlcNAc modification is controlled by two conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA). Mutations in OGT have recently been discovered to cause a novel Congenital Disorder of Glycosylation (OGT-CDG) that is characterized by intellectual disability. The mechanisms by which OGT-CDG mutations affect cognition remain unclear. We manipulated O-GlcNAc transferase and O-GlcNAc hydrolase activity in Drosophila and demonstrate an important role of O-GlcNAcylation in habituation learning and synaptic development at the larval neuromuscular junction. Introduction of patient-specific missense mutations into Drosophila O-GlcNAc transferase using CRISPR/Cas9 gene editing leads to deficits in locomotor function and habituation learning. The habituation deficit can be corrected by blocking O-GlcNAc hydrolysis, indicating that OGT-CDG mutations affect cognition-relevant habituation via reduced protein O-GlcNAcylation. This study establishes a critical role for O-GlcNAc cycling and disrupted O-GlcNAc transferase activity in cognitive dysfunction, and suggests that blocking O-GlcNAc hydrolysis is a potential strategy to treat OGT-CDG.


Assuntos
Drosophila , Deficiência Intelectual , Acetilglucosamina/genética , Acetilglucosamina/metabolismo , Animais , Drosophila/genética , Drosophila/metabolismo , Habituação Psicofisiológica/genética , Humanos , Hidrolases/genética , Deficiência Intelectual/genética , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/genética
4.
Am J Med Genet A ; 194(5): e63472, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38155610

RESUMO

Mendelian neurodevelopmental disorders caused by variants in genes encoding chromatin modification can be categorized as Mendelian disorders of the epigenetic machinery (MDEMs). These disorders have significant overlap in molecular pathways and phenotypes including intellectual disability, short stature, and obesity. Among the MDEMs is Kleefstra syndrome (KLFS), which is caused by haploinsufficiency of EHMT1. Preclinical studies have identified metabolic dysregulation and obesity in KLFS models, but proper clinical translation lacks. In this study, we aim to delineate growth, body composition, and endocrine-metabolic characteristics in a total of 62 individuals with KLFS. Our results revealed a high prevalence of childhood-onset overweight/obesity (60%; 28/47) with disproportionately high body fat percentage, which aligns perfectly with previous preclinical studies. Short stature was common (33%), likely due to advanced skeletal maturation. Endocrine-metabolic investigations showed thyroid dysregulation (22%; 9/41), elevated triglycerides, and decreased blood ammonia levels. Moreover, hand radiographs identified decreased bone mineralization (57%; 8/14) and negative ulnar variance (71%; 10/14). Our findings indicate a high (cardio)metabolic risk in KLFS. Therefore, we recommend monitoring of weight and endocrine-metabolic profile. Supporting a healthy lifestyle and screening of bone mineralization is advised. Our comprehensive results support translational research and contribute to a better understanding of MDEM-associated phenotypes.


Assuntos
Deleção Cromossômica , Anormalidades Craniofaciais , Cardiopatias Congênitas , Deficiência Intelectual , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Histona-Lisina N-Metiltransferase/genética , Obesidade , Composição Corporal , Metaboloma , Cromossomos Humanos Par 9
5.
Cell ; 133(3): 486-97, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18455989

RESUMO

During development of multicellular organisms, cells respond to extracellular cues through nonlinear signal transduction cascades whose principal components have been identified. Nevertheless, the molecular mechanisms underlying specificity of cellular responses remain poorly understood. Spatial distribution of signaling proteins may contribute to signaling specificity. Here, we tested this hypothesis by investigating the role of the Rab5 effector Appl1, an endosomal protein that interacts with transmembrane receptors and Akt. We show that in zebrafish, Appl1 regulates Akt activity and substrate specificity, controlling GSK-3beta but not TSC2. Consistent with this pattern, Appl1 is selectively required for cell survival, most critically in highly expressing tissues. Remarkably, Appl1 function requires its endosomal localization. Indeed, Akt and GSK-3beta, but not TSC2, dynamically associate with Appl1 endosomes upon growth factor stimulation. We propose that partitioning of Akt and selected effectors onto endosomal compartments represents a key mechanism contributing to the specificity of signal transduction in vertebrate development.


Assuntos
Sobrevivência Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Apoptose , Desenvolvimento Embrionário , Endossomos/química , Regulação da Expressão Gênica no Desenvolvimento , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Dados de Sequência Molecular , Especificidade de Órgãos , Transdução de Sinais , Especificidade por Substrato , Vertebrados , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/análise , Proteínas de Peixe-Zebra/genética
6.
Genet Med ; 24(9): 1952-1966, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35916866

RESUMO

PURPOSE: ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. METHODS: An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. RESULTS: ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the DrosophilaZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. CONCLUSION: We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Encéfalo/metabolismo , Regulação da Expressão Gênica , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Domínios Proteicos , Sequenciamento do Exoma
7.
PLoS Biol ; 17(3): e2006146, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30860988

RESUMO

Stress responses are crucial processes that require activation of genetic programs that protect from the stressor. Stress responses are also energy consuming and can thus be deleterious to the organism. The mechanisms coordinating energy consumption during stress response in multicellular organisms are not well understood. Here, we show that loss of the epigenetic regulator G9a in Drosophila causes a shift in the transcriptional and metabolic responses to oxidative stress (OS) that leads to decreased survival time upon feeding the xenobiotic paraquat. During OS exposure, G9a mutants show overactivation of stress response genes, rapid depletion of glycogen, and inability to access lipid energy stores. The OS survival deficiency of G9a mutants can be rescued by a high-sugar diet. Control flies also show improved OS survival when fed a high-sugar diet, suggesting that energy availability is generally a limiting factor for OS tolerance. Directly limiting access to glycogen stores by knocking down glycogen phosphorylase recapitulates the OS-induced survival defects of G9a mutants. We propose that G9a mutants are sensitive to stress because they experience a net reduction in available energy due to (1) rapid glycogen use, (2) an inability to access lipid energy stores, and (3) an overinduced transcriptional response to stress that further exacerbates energy demands. This suggests that G9a acts as a critical regulatory hub between the transcriptional and metabolic responses to OS. Our findings, together with recent studies that established a role for G9a in hypoxia resistance in cancer cell lines, suggest that G9a is of wide importance in controlling the cellular and organismal response to multiple types of stress.


Assuntos
Histona Metiltransferases/metabolismo , Animais , Antioxidantes/metabolismo , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Epigênese Genética/genética , Glicogênio Fosforilase/genética , Glicogênio Fosforilase/metabolismo , Histona Metiltransferases/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Filogenia , Análise de Sequência de RNA
8.
Brain ; 144(5): 1467-1481, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33889951

RESUMO

Peroxiredoxin 3 (PRDX3) belongs to a superfamily of peroxidases that function as protective antioxidant enzymes. Among the six isoforms (PRDX1-PRDX6), PRDX3 is the only protein exclusively localized to the mitochondria, which are the main source of reactive oxygen species. Excessive levels of reactive oxygen species are harmful to cells, inducing mitochondrial dysfunction, DNA damage, lipid and protein oxidation and ultimately apoptosis. Neuronal cell damage induced by oxidative stress has been associated with numerous neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Leveraging the large aggregation of genomic ataxia datasets from the PREPARE (Preparing for Therapies in Autosomal Recessive Ataxias) network, we identified recessive mutations in PRDX3 as the genetic cause of cerebellar ataxia in five unrelated families, providing further evidence for oxidative stress in the pathogenesis of neurodegeneration. The clinical presentation of individuals with PRDX3 mutations consists of mild-to-moderate progressive cerebellar ataxia with concomitant hyper- and hypokinetic movement disorders, severe early-onset cerebellar atrophy, and in part olivary and brainstem degeneration. Patient fibroblasts showed a lack of PRDX3 protein, resulting in decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity. Moreover, PRDX3 knockdown in cerebellar medulloblastoma cells resulted in significantly decreased cell viability, increased H2O2 levels and increased susceptibility to apoptosis triggered by reactive oxygen species. Pan-neuronal and pan-glial in vivo models of Drosophila revealed aberrant locomotor phenotypes and reduced survival times upon exposure to oxidative stress. Our findings reveal a central role for mitochondria and the implication of oxidative stress in PRDX3 disease pathogenesis and cerebellar vulnerability and suggest targets for future therapeutic approaches.


Assuntos
Ataxia Cerebelar/genética , Estresse Oxidativo/genética , Peroxirredoxina III/genética , Adulto , Animais , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/patologia , Drosophila , Feminino , Humanos , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Linhagem
9.
BMC Biol ; 19(1): 112, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34030685

RESUMO

BACKGROUND: Resistance and tolerance are two coexisting defense strategies for fighting infections. Resistance is mediated by signaling pathways that induce transcriptional activation of resistance factors that directly eliminate the pathogen. Tolerance refers to adaptations that limit the health impact of a given pathogen burden, without targeting the infectious agent. The key players governing immune tolerance are largely unknown. In Drosophila, the histone H3 lysine 9 (H3K9) methyltransferase G9a was shown to mediate tolerance to virus infection and oxidative stress (OS), suggesting that abiotic stresses like OS may also evoke tolerance mechanisms. In response to both virus and OS, stress resistance genes were overinduced in Drosophila G9a mutants, suggesting an intact but overactive stress response. We recently demonstrated that G9a promotes tolerance to OS by maintaining metabolic homeostasis and safeguarding energy availability, but it remained unclear if this mechanism also applies to viral infection, or is conserved in other species and stress responses. To address these questions, we analyzed publicly available datasets from Drosophila, mouse, and human in which global gene expression levels were measured in G9a-depleted conditions and controls at different time points upon stress exposure. RESULTS: In all investigated datasets, G9a attenuates the transcriptional stress responses that confer resistance against the encountered stressor. Comparative analysis of conserved G9a-dependent stress response genes suggests that G9a is an intimate part of the design principles of stress resistance, buffering the induction of promiscuous stress signaling pathways and stress-specific resistance factors. Importantly, we find stress-dependent downregulation of metabolic genes to also be dependent on G9a across all of the tested datasets. CONCLUSIONS: These results suggest that G9a sets the balance between activation of resistance genes and maintaining metabolic homeostasis, thereby ensuring optimal organismal performance during exposure to diverse types of stress across different species. We therefore propose G9a as a potentially conserved master regulator underlying the widely important, yet poorly understood, concept of stress tolerance.


Assuntos
Epigênese Genética , Animais , Drosophila/genética , Drosophila/metabolismo , Epigenômica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Estresse Oxidativo/genética , Transcrição Gênica
10.
J Biol Chem ; 295(26): 8636-8646, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32094227

RESUMO

O-GlcNAcylation is an abundant post-translational modification in neurons. In mice, an increase in O-GlcNAcylation leads to defects in hippocampal synaptic plasticity and learning. O-GlcNAcylation is established by two opposing enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). To investigate the role of OGA in elementary learning, we generated catalytically inactive and precise knockout Oga alleles (OgaD133N and OgaKO , respectively) in Drosophila melanogaster Adult OgaD133N and OgaKO flies lacking O-GlcNAcase activity showed locomotor phenotypes. Importantly, both Oga lines exhibited deficits in habituation, an evolutionarily conserved form of learning, highlighting that the requirement for O-GlcNAcase activity for cognitive function is preserved across species. Loss of O-GlcNAcase affected a number of synaptic boutons at the axon terminals of larval neuromuscular junction. Taken together, we report behavioral and neurodevelopmental phenotypes associated with Oga alleles and show that Oga contributes to cognition and synaptic morphology in Drosophila.


Assuntos
Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , beta-N-Acetil-Hexosaminidases/metabolismo , Acilação , Animais , Cognição , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Técnicas de Inativação de Genes , Locomoção , Longevidade , Sinapses/fisiologia , beta-N-Acetil-Hexosaminidases/genética
11.
J Child Psychol Psychiatry ; 61(5): 545-555, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31849056

RESUMO

BACKGROUND: Mental disorders, including Attention-Deficit/Hyperactivity Disorder (ADHD), have a complex etiology, and identification of underlying genetic risk factors is challenging. This study used a multistep approach to identify and validate a novel risk gene for ADHD and psychiatric comorbidity. METHODS: In a single family, severely affected by ADHD and cooccurring disorders, we applied single nucleotide polymorphism (SNP)-array analysis to detect copy-number variations (CNVs) linked to disease. Genes present in the identified CNV were subsequently tested for their association with ADHD in the largest data set currently available (n = 55,374); this gene-set and gene-based association analyses were based on common genetic variants. Significant findings were taken forward for functional validation using Drosophila melanogaster as biological model system, altering gene expression using the GAL4-UAS system and a pan-neuronal driver, and subsequently characterizing locomotor activity and sleep as functional readouts. RESULTS: We identified a copy number gain in 8p23.3, which segregated with psychiatric phenotypes in the family and was confirmed by quantitative RT-PCR. Common genetic variants in this locus were associated with ADHD, especially those in FBXO25 and TDRP. Overexpression of the FBXO25 orthologue in two Drosophila models consistently led to increased locomotor activity and reduced sleep compared with the genetic background control. CONCLUSIONS: We combine ADHD risk gene identification in an individual family with genetic association testing in a large case-control data set and functional validation in a model system, together providing an important illustration of an integrative approach suggesting that FBXO25 contributes to key features of ADHD and comorbid neuropsychiatric disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Drosophila melanogaster/genética , Evolução Molecular , Proteínas F-Box/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Fenótipo , Animais , Pré-Escolar , Comorbidade , Modelos Animais de Doenças , Saúde da Família , Feminino , Humanos , Masculino , Proteínas Nucleares/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética
12.
Nature ; 511(7509): 344-7, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24896178

RESUMO

Severe intellectual disability (ID) occurs in 0.5% of newborns and is thought to be largely genetic in origin. The extensive genetic heterogeneity of this disorder requires a genome-wide detection of all types of genetic variation. Microarray studies and, more recently, exome sequencing have demonstrated the importance of de novo copy number variations (CNVs) and single-nucleotide variations (SNVs) in ID, but the majority of cases remain undiagnosed. Here we applied whole-genome sequencing to 50 patients with severe ID and their unaffected parents. All patients included had not received a molecular diagnosis after extensive genetic prescreening, including microarray-based CNV studies and exome sequencing. Notwithstanding this prescreening, 84 de novo SNVs affecting the coding region were identified, which showed a statistically significant enrichment of loss-of-function mutations as well as an enrichment for genes previously implicated in ID-related disorders. In addition, we identified eight de novo CNVs, including single-exon and intra-exonic deletions, as well as interchromosomal duplications. These CNVs affected known ID genes more frequently than expected. On the basis of diagnostic interpretation of all de novo variants, a conclusive genetic diagnosis was reached in 20 patients. Together with one compound heterozygous CNV causing disease in a recessive mode, this results in a diagnostic yield of 42% in this extensively studied cohort, and 62% as a cumulative estimate in an unselected cohort. These results suggest that de novo SNVs and CNVs affecting the coding region are a major cause of severe ID. Genome sequencing can be applied as a single genetic test to reliably identify and characterize the comprehensive spectrum of genetic variation, providing a genetic diagnosis in the majority of patients with severe ID.


Assuntos
Variações do Número de Cópias de DNA/genética , Genoma Humano/genética , Deficiência Intelectual/genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Cromossomos Humanos Par 4/genética , Cromossomos Humanos X/genética , Estudos de Coortes , Duplicação Gênica/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Masculino
13.
J Med Genet ; 56(5): 283-292, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30591515

RESUMO

BACKGROUND: Genetic forms of ataxia are a heterogenous group of degenerative diseases of the cerebellum. Many causative genes have been identified. We aimed to systematically investigate these genes to better understand ataxia pathophysiology. METHODS: A manually curated catalogue of 71 genes involved in disorders with progressive ataxias as a major clinical feature was subjected to an integrated gene ontology, protein network and brain gene expression profiling analysis. RESULTS: We found that genes mutated in ataxias operate in networks with significantly enriched protein connectivity, demonstrating coherence on a global level, independent of inheritance mode. Moreover, elevated expression specifically in the cerebellum predisposes to ataxia. Genes expressed in this pattern are significantly over-represented among genes mutated in ataxia and are enriched for ion homeostasis/synaptic functions. The majority of genes mutated in ataxia, however, does not show elevated cerebellar expression that could account for region-specific degeneration. For these, we identified defective cellular stress responses as a major common biological theme, suggesting that the defence pathways against stress are more critical to maintain cerebellar integrity than integrity of other brain regions. Approximately half of the genes mutated in ataxia, mostly part of the stress module, show higher expression at embryonic stages, which argues for a developmental predisposition. CONCLUSION: Genetic defects in ataxia predominantly affect neuronal homeostasis, to which the cerebellum appears to be excessively susceptible. Based on the identified modules, it is conceivable to propose common therapeutic interventions that target deregulated calcium and reactive oxygen species levels, or mechanisms that can decrease the harmful downstream effects of these deleterious insults.


Assuntos
Ataxia/etiologia , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Modelos Biológicos , Ataxia/metabolismo , Ataxia/fisiopatologia , Ataxia Cerebelar/genética , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/fisiopatologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Progressão da Doença , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transcriptoma
14.
PLoS Genet ; 13(10): e1006864, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29069077

RESUMO

Kleefstra syndrome, caused by haploinsufficiency of euchromatin histone methyltransferase 1 (EHMT1), is characterized by intellectual disability (ID), autism spectrum disorder (ASD), characteristic facial dysmorphisms, and other variable clinical features. In addition to EHMT1 mutations, de novo variants were reported in four additional genes (MBD5, SMARCB1, NR1I3, and KMT2C), in single individuals with clinical characteristics overlapping Kleefstra syndrome. Here, we present a novel cohort of five patients with de novo loss of function mutations affecting the histone methyltransferase KMT2C. Our clinical data delineates the KMT2C phenotypic spectrum and reinforces the phenotypic overlap with Kleefstra syndrome and other related ID disorders. To elucidate the common molecular basis of the neuropathology associated with mutations in KMT2C and EHMT1, we characterized the role of the Drosophila KMT2C ortholog, trithorax related (trr), in the nervous system. Similar to the Drosophila EHMT1 ortholog, G9a, trr is required in the mushroom body for short term memory. Trr ChIP-seq identified 3371 binding sites, mainly in the promoter of genes involved in neuronal processes. Transcriptional profiling of pan-neuronal trr knockdown and G9a null mutant fly heads identified 613 and 1123 misregulated genes, respectively. These gene sets show a significant overlap and are associated with nearly identical gene ontology enrichments. The majority of the observed biological convergence is derived from predicted indirect target genes. However, trr and G9a also have common direct targets, including the Drosophila ortholog of Arc (Arc1), a key regulator of synaptic plasticity. Our data highlight the clinical and molecular convergence between the KMT2 and EHMT protein families, which may contribute to a molecular network underlying a larger group of ID/ASD-related disorders.


Assuntos
Transtorno do Espectro Autista/genética , Anormalidades Craniofaciais/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Cardiopatias Congênitas/genética , Histona-Lisina N-Metiltransferase/genética , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Adolescente , Adulto , Animais , Transtorno do Espectro Autista/fisiopatologia , Sítios de Ligação/genética , Criança , Deleção Cromossômica , Cromossomos Humanos Par 9/genética , Receptor Constitutivo de Androstano , Anormalidades Craniofaciais/fisiopatologia , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica , Haploinsuficiência , Cardiopatias Congênitas/fisiopatologia , Histonas/genética , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Mutação , Plasticidade Neuronal/genética , Regiões Promotoras Genéticas
15.
Am J Hum Genet ; 98(1): 149-64, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26748517

RESUMO

Intellectual disability (ID) disorders are genetically and phenotypically extremely heterogeneous. Can this complexity be depicted in a comprehensive way as a means of facilitating the understanding of ID disorders and their underlying biology? We provide a curated database of 746 currently known genes, mutations in which cause ID (ID-associated genes [ID-AGs]), classified according to ID manifestation and associated clinical features. Using this integrated resource, we show that ID-AGs are substantially enriched with co-expression, protein-protein interactions, and specific biological functions. Systematic identification of highly enriched functional themes and phenotypes revealed typical phenotype combinations characterizing process-defined groups of ID disorders, such as chromatin-related disorders and deficiencies in DNA repair. Strikingly, phenotype classification efficiently breaks down ID-AGs into subsets with significantly elevated biological coherence and predictive power. Custom-made functional Drosophila datasets revealed further characteristic phenotypes among ID-AGs and specific clinical classes. Our study and resource provide systematic insights into the molecular and clinical landscape of ID disorders, represent a significant step toward overcoming current limitations in ID research, and prove the utility of systematic human and cross-species phenomics analyses in highly heterogeneous genetic disorders.


Assuntos
Deficiência Intelectual/genética , Mutação , Fenótipo , Animais , Drosophila/genética , Humanos
16.
Am J Hum Genet ; 98(3): 541-552, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26942287

RESUMO

Intellectual disability (ID) and autism spectrum disorders (ASD) are genetically heterogeneous, and a significant number of genes have been associated with both conditions. A few mutations in POGZ have been reported in recent exome studies; however, these studies do not provide detailed clinical information. We collected the clinical and molecular data of 25 individuals with disruptive mutations in POGZ by diagnostic whole-exome, whole-genome, or targeted sequencing of 5,223 individuals with neurodevelopmental disorders (ID primarily) or by targeted resequencing of this locus in 12,041 individuals with ASD and/or ID. The rarity of disruptive mutations among unaffected individuals (2/49,401) highlights the significance (p = 4.19 × 10(-13); odds ratio = 35.8) and penetrance (65.9%) of this genetic subtype with respect to ASD and ID. By studying the entire cohort, we defined common phenotypic features of POGZ individuals, including variable levels of developmental delay (DD) and more severe speech and language delay in comparison to the severity of motor delay and coordination issues. We also identified significant associations with vision problems, microcephaly, hyperactivity, a tendency to obesity, and feeding difficulties. Some features might be explained by the high expression of POGZ, particularly in the cerebellum and pituitary, early in fetal brain development. We conducted parallel studies in Drosophila by inducing conditional knockdown of the POGZ ortholog row, further confirming that dosage of POGZ, specifically in neurons, is essential for normal learning in a habituation paradigm. Combined, the data underscore the pathogenicity of loss-of-function mutations in POGZ and define a POGZ-related phenotype enriched in specific features.


Assuntos
Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Transposases/genética , Adolescente , Adulto , Animais , Transtorno do Espectro Autista/diagnóstico , Criança , Pré-Escolar , Estudos de Coortes , Regulação para Baixo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Exoma , Feminino , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/genética , Modelos Lineares , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Mutação , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Brain ; 141(9): 2592-2604, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30084953

RESUMO

Autosomal recessive cerebellar ataxias are a group of rare disorders that share progressive degeneration of the cerebellum and associated tracts as the main hallmark. Here, we report two unrelated patients with a new subtype of autosomal recessive cerebellar ataxia caused by biallelic, gene-disruptive mutations in GDAP2, a gene previously not implicated in disease. Both patients had onset of ataxia in the fourth decade. Other features included progressive spasticity and dementia. Neuropathological examination showed degenerative changes in the cerebellum, olive inferior, thalamus, substantia nigra, and pyramidal tracts, as well as tau pathology in the hippocampus and amygdala. To provide further evidence for a causative role of GDAP2 mutations in autosomal recessive cerebellar ataxia pathophysiology, its orthologous gene was investigated in the fruit fly Drosophila melanogaster. Ubiquitous knockdown of Drosophila Gdap2 resulted in shortened lifespan and motor behaviour anomalies such as righting defects, reduced and uncoordinated walking behaviour, and compromised flight. Gdap2 expression levels responded to stress treatments in control flies, and Gdap2 knockdown flies showed increased sensitivity to deleterious effects of stressors such as reactive oxygen species and nutrient deprivation. Thus, Gdap2 knockdown in Drosophila and GDAP2 loss-of-function mutations in humans lead to locomotor phenotypes, which may be mediated by altered responses to cellular stress.


Assuntos
Ataxia Cerebelar/genética , Ataxia Cerebelar/fisiopatologia , Proteínas do Tecido Nervoso/genética , Adulto , Animais , Ataxia/genética , Ataxia/fisiopatologia , Ataxia Cerebelar/metabolismo , Cerebelo/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Feminino , Técnicas de Silenciamento de Genes/métodos , Genes Recessivos , Predisposição Genética para Doença/genética , Humanos , Pessoa de Meia-Idade , Mutação , Proteínas do Tecido Nervoso/fisiologia , Fenótipo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
18.
PLoS Genet ; 12(5): e1006022, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27166630

RESUMO

Here we report a stop-mutation in the BOD1 (Biorientation Defective 1) gene, which co-segregates with intellectual disability in a large consanguineous family, where individuals that are homozygous for the mutation have no detectable BOD1 mRNA or protein. The BOD1 protein is required for proper chromosome segregation, regulating phosphorylation of PLK1 substrates by modulating Protein Phosphatase 2A (PP2A) activity during mitosis. We report that fibroblast cell lines derived from homozygous BOD1 mutation carriers show aberrant localisation of the cell cycle kinase PLK1 and its phosphatase PP2A at mitotic kinetochores. However, in contrast to the mitotic arrest observed in BOD1-siRNA treated HeLa cells, patient-derived cells progressed through mitosis with no apparent segregation defects but at an accelerated rate compared to controls. The relatively normal cell cycle progression observed in cultured cells is in line with the absence of gross structural brain abnormalities in the affected individuals. Moreover, we found that in normal adult brain tissues BOD1 expression is maintained at considerable levels, in contrast to PLK1 expression, and provide evidence for synaptic localization of Bod1 in murine neurons. These observations suggest that BOD1 plays a cell cycle-independent role in the nervous system. To address this possibility, we established two Drosophila models, where neuron-specific knockdown of BOD1 caused pronounced learning deficits and significant abnormalities in synapse morphology. Together our results reveal novel postmitotic functions of BOD1 as well as pathogenic mechanisms that strongly support a causative role of BOD1 deficiency in the aetiology of intellectual disability. Moreover, by demonstrating its requirement for cognitive function in humans and Drosophila we provide evidence for a conserved role of BOD1 in the development and maintenance of cognitive features.


Assuntos
Proteínas de Ciclo Celular/genética , Cognição , Proteína Fosfatase 2/genética , Sinapses/genética , Animais , Segregação de Cromossomos/genética , Drosophila/genética , Drosophila/fisiologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Aprendizagem , Camundongos , Mitose/genética , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Sinapses/patologia , Quinase 1 Polo-Like
19.
Am J Med Genet A ; 176(12): 2924-2929, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30302932

RESUMO

This report summarizes and highlights the fifth International RASopathies Symposium: When Development and Cancer Intersect, held in Orlando, Florida in July 2017. The RASopathies comprise a recognizable pattern of malformation syndromes that are caused by germ line mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway. Because of their common underlying pathogenetic etiology, there is significant overlap in their phenotypic features, which includes craniofacial dysmorphology, cardiac, cutaneous, musculoskeletal, gastrointestinal and ocular abnormalities, neurological and neurocognitive issues, and a predisposition to cancer. The RAS pathway is a well-known oncogenic pathway that is commonly found to be activated in somatic malignancies. As in somatic cancers, the RASopathies can be caused by various pathogenetic mechanisms that ultimately impact or alter the normal function and regulation of the MAPK pathway. As such, the RASopathies represent an excellent model of study to explore the intersection of the effects of dysregulation and its consequence in both development and oncogenesis.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas ras/genética , Animais , Regulação da Expressão Gênica , Estudos de Associação Genética/métodos , Desenvolvimento Humano , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Organogênese/genética , Transdução de Sinais , Síndrome , Proteínas ras/metabolismo
20.
Hum Mol Genet ; 24(23): 6736-55, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26376863

RESUMO

ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2(Camk2aCre/0) mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2(Camk2aCre/0) mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2(Camk2aCre/0) mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2(Camk2aCre/0) mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system.


Assuntos
Transtornos Cognitivos/etiologia , Proteínas de Drosophila/genética , Proteínas de Membrana/genética , Degeneração Neural/etiologia , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/genética , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Drosophila , Feminino , Técnicas de Silenciamento de Genes , Deficiência Intelectual/genética , Masculino , Camundongos , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/ultraestrutura , Transtornos Parkinsonianos/genética , Sinapses/metabolismo , Sinapses/fisiologia , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa