Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 20(21)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694163

RESUMO

Lysozyme is one of the most important anti-bacterial effectors in the innate immune system of animals. Besides its direct antibacterial enzymatic activity, lysozyme displays other biological properties, pointing toward a significant anti-inflammatory effect, many aspects of which are still elusive. Here we investigate the perturbation of gene expression profiles induced by lysozyme in a monocyte cell line in vitro considering a perspective as broad as the whole transcriptome profiling. The results of the RNA-seq experiment show that lysozyme induces transcriptional modulation of the TNF-α/IL-1ß pathway genes in U937 monocytes. The analysis of transcriptomic profiles with IPA® identified a simple but robust molecular network of genes, in which the regulation trends are fully consistent with the anti-inflammatory activity of lysozyme. This study provides the first evidence in support of the anti-inflammatory action of lysozyme on the basis of transcriptomic regulation data resulting from the broad perspective of a whole-transcriptome profiling. Such important effects can be achieved with the supplementation of relatively low concentrations of lysozyme, for a short time of exposure. These new insights allow the potential of lysozyme in pharmacological applications to be better exploited.


Assuntos
Monócitos/imunologia , Muramidase/imunologia , Ativação Transcricional , Transcriptoma , Fator de Necrose Tumoral alfa/genética , Linhagem Celular , Humanos , Inflamação/genética , Inflamação/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Monócitos/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/imunologia
2.
EMBO J ; 31(16): 3457-67, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22781128

RESUMO

Phototropism allows plants to redirect their growth towards the light to optimize photosynthesis under reduced light conditions. Phototropin 1 (phot1) is the primary low blue light-sensing receptor triggering phototropism in Arabidopsis. Light-induced autophosphorylation of phot1, an AGC-class protein kinase, constitutes an essential step for phototropism. However, apart from the receptor itself, substrates of phot1 kinase activity are less clearly established. Phototropism is also influenced by the cryptochromes and phytochromes photoreceptors that do not provide directional information but influence the process through incompletely characterized mechanisms. Here, we show that Phytochrome Kinase Substrate 4 (PKS4), a known element of phot1 signalling, is a substrate of phot1 kinase activity in vitro that is phosphorylated in a phot1-dependent manner in vivo. PKS4 phosphorylation is transient and regulated by a type 2-protein phosphatase. Moreover, phytochromes repress the accumulation of the light-induced phosphorylated form of PKS4 showing a convergence of photoreceptor activity on this signalling element. Our physiological analyses suggest that PKS4 phosphorylation is not essential for phototropism but is part of a negative feedback mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Fosforilação , Processos Fototróficos , Proteínas Serina-Treonina Quinases , Transdução de Sinais
3.
Plant Physiol ; 152(3): 1391-405, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20071603

RESUMO

In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1-PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fototropinas/metabolismo , Folhas de Planta/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Tamanho Celular , Cloroplastos/fisiologia , Homeostase , Ácidos Indolacéticos/metabolismo , Luz , Mutação , Estômatos de Plantas/fisiologia
4.
Curr Opin Plant Biol ; 7(5): 564-9, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15337099

RESUMO

The phytochrome photoreceptors regulate all major transitions during the life cycle of plants. The role of each member of the phytochrome family in Arabidopsis is starting to be understood, and a molecular description of phytochrome-regulated flowering time and shade avoidance is emerging. Recent publications have challenged some areas of well-accepted models concerning phytochrome signalling. Moreover, the importance of proteolysis during phytochrome signalling is becoming very apparent.


Assuntos
Arabidopsis/metabolismo , Luz , Células Fotorreceptoras/metabolismo , Fitocromo/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis , Regulação para Baixo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Fitocromo A , Fitocromo B , Fatores de Tempo
5.
PLoS One ; 9(9): e107535, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25244344

RESUMO

BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5' end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3' end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Endocitose/fisiologia , Complexo de Golgi/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mioblastos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Citoesqueleto de Actina/metabolismo , Processamento Alternativo , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Distonina , Camundongos , Microtúbulos/metabolismo , Dados de Sequência Molecular , Isoformas de Proteínas/metabolismo
6.
J Invest Dermatol ; 133(7): 1785-93, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23407400

RESUMO

Paraneoplastic pemphigus (PNP) shows autoantibodies mainly to plakin and desmosomal cadherin family proteins. We have recently identified alpha-2-macroglobulin-like-1 (A2ML1), a broad range protease inhibitor, as a unique PNP antigen. In this study, we tested a large number of PNP sera by various methods. Forty (69.0%) of 58 PNP sera recognized A2ML1 recombinant protein expressed in COS7 cells by immunofluorescence (IF) and/or immunoprecipitation (IP)/immunoblotting (IB). IP/IB showed higher sensitivity than IF. In addition, 22 (37.9%) PNP sera reacted with A2ML1 by IB of cultured normal human keratinocytes (NHKs) under non-reducing conditions. Statistical analyses using various clinical and immunological data showed that the presence of anti-A2ML1 autoantibodies was associated with early disease onset and absence of ocular lesions. Next, to investigate the pathogenic role of anti-A2ML1 antibody, we performed additional functional studies. Addition of anti-A2ML1 polyclonal antibody to culture media decreased NHK cell adhesion examined by dissociation assay, and increased plasmin activity detected by casein zymography, suggesting that anti-A2ML1 antibody may decrease NHK cell adhesion through plasmin activation by inhibition of A2ML1. This study demonstrates that autoantibodies to A2ML1 are frequently and specifically detected and may have a pathogenic role in PNP.


Assuntos
Autoanticorpos/fisiologia , Síndromes Paraneoplásicas/etiologia , Síndromes Paraneoplásicas/fisiopatologia , Pênfigo/etiologia , Pênfigo/fisiopatologia , alfa-Macroglobulinas/imunologia , Adolescente , Adulto , Idoso , Animais , Autoanticorpos/sangue , Autoanticorpos/farmacologia , Células COS , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Criança , Chlorocebus aethiops , Modelos Animais de Doenças , Fibrinolisina/metabolismo , Imunofluorescência , Humanos , Imunoprecipitação , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Pessoa de Meia-Idade , Ratos , Transfecção , Adulto Jovem , alfa-Macroglobulinas/genética
7.
PLoS One ; 5(8): e12250, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20805888

RESUMO

BACKGROUND: Paraneoplastic pemphigus (PNP) is a devastating autoimmune blistering disease, involving mucocutaneous and internal organs, and associated with underlying neoplasms. PNP is characterized by the production of autoantibodies targeting proteins of the plakin and cadherin families involved in maintenance of cell architecture and tissue cohesion. Nevertheless, the identity of an antigen of Mr 170,000 (p170), thought to be critical in PNP pathogenesis, has remained unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using an immunoprecipitation and mass spectrometry based approach, we identified p170 as alpha-2-macroglobuline-like-1, a broad range protease inhibitor expressed in stratified epithelia and other tissues damaged in the PNP disease course. We demonstrate that 10 PNP sera recognize alpha-2-macroglobuline-like-1 (A2ML1), while none of the control sera obtained from patients with bullous pemphigoid, pemphigus vulgaris, pemphigus foliaceus and normal subjects does. CONCLUSIONS/SIGNIFICANCE: Our study unravels a broad range protease inhibitor as a new class of target antigens in a paraneoplastic autoimmune multiorgan syndrome and opens a new challenging investigation avenue for a better understanding of PNP pathogenesis.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Doenças Autoimunes/imunologia , Inibidores de Proteases/imunologia , alfa-Macroglobulinas/imunologia , Autoantígenos/química , Autoantígenos/metabolismo , Doenças Autoimunes/sangue , Linhagem Celular , Meios de Cultura , Epiderme/metabolismo , Regulação da Expressão Gênica , Humanos , Imunoprecipitação , Queratinócitos/citologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Estrutura Terciária de Proteína , Substâncias Redutoras/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transfecção , alfa-Macroglobulinas/química , alfa-Macroglobulinas/metabolismo
8.
Plant Physiol ; 147(2): 661-71, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18390804

RESUMO

Gravity and light are major factors shaping plant growth. Light perceived by phytochromes leads to seedling deetiolation, which includes the deviation from vertical hypocotyl growth and promotes hypocotyl phototropism. These light responses enhance survival of young seedlings during their emergence from the soil. The PHYTOCHROME KINASE SUBSTRATE (PKS) family is composed of four members in Arabidopsis (Arabidopsis thaliana): PKS1 to PKS4. Here we show that PKS4 is a negative regulator of both phytochrome A- and B-mediated inhibition of hypocotyl growth and promotion of cotyledon unfolding. Most prominently, pks4 mutants show abnormal phytochrome-modulated hypocotyl growth orientation. In dark-grown seedlings hypocotyls change from the original orientation defined by seed position to the upright orientation defined by gravity and light reduces the magnitude of this shift. In older seedlings with the hypocotyls already oriented by gravity, light promotes the deviation from vertical orientation. Based on the characterization of pks4 mutants we propose that PKS4 inhibits changes in growth orientation under red or far-red light. Our data suggest that in these light conditions PKS4 acts as an inhibitor of asymmetric growth. This hypothesis is supported by the phenotype of PKS4 overexpressers. Together with previous findings, these results indicate that the PKS family plays important functions during light-regulated tropic growth responses.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Hipocótilo/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Arabidopsis/genética , Sequência de Bases , Primers do DNA , Peptídeos e Proteínas de Sinalização Intracelular , Luz , Fitocromo/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Transdução de Sinais
9.
Plant Physiol ; 146(1): 108-15, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18024556

RESUMO

Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Cor , Escuridão , Regulação da Expressão Gênica de Plantas/fisiologia , Gravitropismo , Luz , Proteínas de Membrana , Fototropismo , Raízes de Plantas/genética
10.
Proc Natl Acad Sci U S A ; 103(26): 10134-9, 2006 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-16777956

RESUMO

Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1-PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Fototropismo/genética , Arabidopsis/genética , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Membrana Celular/química , Membrana Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Fosfoproteínas/análise , Fosfoproteínas/genética , Fitocromo A/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa