Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Cell ; 163(4): 866-79, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26522593

RESUMO

ESCRT-III is required for lipid membrane remodeling in many cellular processes, from abscission to viral budding and multi-vesicular body biogenesis. However, how ESCRT-III polymerization generates membrane curvature remains debated. Here, we show that Snf7, the main component of ESCRT-III, polymerizes into spirals at the surface of lipid bilayers. When covering the entire membrane surface, these spirals stopped growing when densely packed: they had a polygonal shape, suggesting that lateral compression could deform them. We reasoned that Snf7 spirals could function as spiral springs. By measuring the polymerization energy and the rigidity of Snf7 filaments, we showed that they were deformed while growing in a confined area. Furthermore, we observed that the elastic expansion of compressed Snf7 spirals generated an area difference between the two sides of the membrane and thus curvature. This spring-like activity underlies the driving force by which ESCRT-III could mediate membrane deformation and fission.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/ultraestrutura , Bicamadas Lipídicas/química , Modelos Moleculares , Leveduras/metabolismo , Membranas Intracelulares/química , Liberação de Vírus , Leveduras/citologia
2.
Nature ; 621(7977): 206-214, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648856

RESUMO

Transient receptor potential (TRP) channels are a large, eukaryotic ion channel superfamily that control diverse physiological functions, and therefore are attractive drug targets1-5. More than 210 structures from more than 20 different TRP channels have been determined, and all are tetramers4. Despite this wealth of structures, many aspects concerning TRPV channels remain poorly understood, including the pore-dilation phenomenon, whereby prolonged activation leads to increased conductance, permeability to large ions and loss of rectification6,7. Here, we used high-speed atomic force microscopy (HS-AFM) to analyse membrane-embedded TRPV3 at the single-molecule level and discovered a pentameric state. HS-AFM dynamic imaging revealed transience and reversibility of the pentamer in dynamic equilibrium with the canonical tetramer through membrane diffusive protomer exchange. The pentamer population increased upon diphenylboronic anhydride (DPBA) addition, an agonist that has been shown to induce TRPV3 pore dilation. On the basis of these findings, we designed a protein production and data analysis pipeline that resulted in a cryogenic-electron microscopy structure of the TRPV3 pentamer, showing an enlarged pore compared to the tetramer. The slow kinetics to enter and exit the pentameric state, the increased pentamer formation upon DPBA addition and the enlarged pore indicate that the pentamer represents the structural correlate of pore dilation. We thus show membrane diffusive protomer exchange as an additional mechanism for structural changes and conformational variability. Overall, we provide structural evidence for a non-canonical pentameric TRP-channel assembly, laying the foundation for new directions in TRP channel research.


Assuntos
Multimerização Proteica , Canais de Cátion TRPV , Anidridos/química , Anidridos/farmacologia , Análise de Dados , Difusão , Subunidades Proteicas/química , Subunidades Proteicas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Canais de Cátion TRPV/química , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/ultraestrutura , Microscopia de Força Atômica , Terapia de Alvo Molecular , Microscopia Crioeletrônica , Estrutura Quaternária de Proteína/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
3.
Nature ; 594(7863): 385-390, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135520

RESUMO

Understanding structural dynamics of biomolecules at the single-molecule level is vital to advancing our knowledge of molecular mechanisms. Currently, there are few techniques that can capture dynamics at the sub-nanometre scale and in physiologically relevant conditions. Atomic force microscopy (AFM)1 has the advantage of analysing unlabelled single molecules in physiological buffer and at ambient temperature and pressure, but its resolution limits the assessment of conformational details of biomolecules2. Here we present localization AFM (LAFM), a technique developed to overcome current resolution limitations. By applying localization image reconstruction algorithms3 to peak positions in high-speed AFM and conventional AFM data, we increase the resolution beyond the limits set by the tip radius, and resolve single amino acid residues on soft protein surfaces in native and dynamic conditions. LAFM enables the calculation of high-resolution maps from either images of many molecules or many images of a single molecule acquired over time, facilitating single-molecule structural analysis. LAFM is a post-acquisition image reconstruction method that can be applied to any biomolecular AFM dataset.


Assuntos
Microscopia de Força Atômica/métodos , Microscopia de Força Atômica/normas , Algoritmos , Aminoácidos/química , Anexina A5/química , Anexina A5/ultraestrutura , Aquaporinas/química , Aquaporinas/ultraestrutura , Canais de Cloreto/química , Canais de Cloreto/ultraestrutura , Conjuntos de Dados como Assunto , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Humanos , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular
4.
Proc Natl Acad Sci U S A ; 120(28): e2221616120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399394

RESUMO

The canonical gating mechanism of tetrameric cation channels involves the spreading of the pore-lining helices at the so-called bundle-crossing gate. Despite a wealth of structural information, we lack a physical description of the gating process. Here, I took advantage of an entropic polymer stretching physical model and MthK structures to derive the forces and energies involved in pore-domain gating. In MthK, the Ca2+-induced conformational change in the RCK domain alone opens the bundle-crossing gate through pulling via unfolded linkers. In the open conformation, the linkers serve as entropic springs between the RCK domain and bundle-crossing gate that store an elastic potential energy of 3.6kBT and exert 9.8 pN (piconewton) radial pulling force to keep the gate open. I further derive that the work to load the linkers to prime the channel for opening is up to 3.8kBT, exerting up to 15.5 pN to pull the bundle-crossing open. Opening of the bundle-crossing leads to a release of 3.3kBT spring potential energy. Thus, the closed/RCK-apo and the open/RCK-Ca2+ conformations are separated by a barrier of several kBT. I discuss how these findings relate to the functional properties of MthK and suggest that given the architectural conservation of the helix-pore-loop-helix pore-domain among all tetrameric cation channels, these physical parameters might be quite general.


Assuntos
Estrutura Secundária de Proteína , Conformação Proteica
5.
Nature ; 573(7773): 230-234, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31435018

RESUMO

PIEZO1 is a mechanosensitive channel that converts applied force into electrical signals. Partial molecular structures show that PIEZO1 is a bowl-shaped trimer with extended arms. Here we use cryo-electron microscopy to show that PIEZO1 adopts different degrees of curvature in lipid vesicles of different sizes. We also use high-speed atomic force microscopy to analyse the deformability of PIEZO1 under force in membranes on a mica surface, and show that PIEZO1 can be flattened reversibly into the membrane plane. By approximating the absolute force applied, we estimate a range of values for the mechanical spring constant of PIEZO1. Both methods of microscopy demonstrate that PIEZO1 can deform its shape towards a planar structure. This deformation could explain how lateral membrane tension can be converted into a conformation-dependent change in free energy to gate the PIEZO1 channel in response to mechanical perturbations.


Assuntos
Microscopia Crioeletrônica , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Microscopia de Força Atômica , Silicatos de Alumínio/química , Animais , Células HEK293 , Humanos , Canais Iônicos/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Lipossomos/ultraestrutura , Camundongos
6.
J Biol Chem ; 299(4): 104575, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870686

RESUMO

Endosomal sorting complex required for transport (ESCRT) proteins assemble on the cytoplasmic leaflet of membranes and remodel them. ESCRT is involved in biological processes where membranes are bent away from the cytosol, constricted, and finally severed, such as in multivesicular body formation (in the endosomal pathway for protein sorting) or abscission during cell division. The ESCRT system is hijacked by enveloped viruses to allow buds of nascent virions to be constricted, severed, and released. ESCRT-III proteins, the most downstream components of the ESCRT system, are monomeric and cytosolic in their autoinhibited conformation. They share a common architecture, a four-helix bundle with a fifth helix that interacts with this bundle to prevent polymerizing. Upon binding to negatively charged membranes, the ESCRT-III components adopt an activated state that allows them to polymerize into filaments and spirals and to interact with the AAA-ATPase Vps4 for polymer remodeling. ESCRT-III has been studied with electron microscopy and fluorescence microscopy; these methods provided invaluable information about ESCRT assembly structures or their dynamics, respectively, but neither approach provides detailed insights into both aspects simultaneously. High-speed atomic force microscopy (HS-AFM) has overcome this shortcoming, providing movies at high spatiotemporal resolution of biomolecular processes, significantly increasing our understanding of ESCRT-III structure and dynamics. Here, we review the contributions of HS-AFM in the analysis of ESCRT-III, focusing on recent developments of nonplanar and deformable HS-AFM supports. We divide the HS-AFM observations into four sequential steps in the ESCRT-III lifecycle: (1) polymerization, (2) morphology, (3) dynamics, and (4) depolymerization.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas de Membrana , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Microscopia de Força Atômica , Endossomos/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(14): 6594-6601, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30890636

RESUMO

Receptor-ligand interactions are essential for biological function and their binding strength is commonly explained in terms of static lock-and-key models based on molecular complementarity. However, detailed information on the full unbinding pathway is often lacking due, in part, to the static nature of atomic structures and ensemble averaging inherent to bulk biophysics approaches. Here we combine molecular dynamics and high-speed force spectroscopy on the streptavidin-biotin complex to determine the binding strength and unbinding pathways over the widest dynamic range. Experiment and simulation show excellent agreement at overlapping velocities and provided evidence of the unbinding mechanisms. During unbinding, biotin crosses multiple energy barriers and visits various intermediate states far from the binding pocket, while streptavidin undergoes transient induced fits, all varying with loading rate. This multistate process slows down the transition to the unbound state and favors rebinding, thus explaining the long lifetime of the complex. We provide an atomistic, dynamic picture of the unbinding process, replacing a simple two-state picture with one that involves many routes to the lock and rate-dependent induced-fit motions for intermediates, which might be relevant for other receptor-ligand bonds.


Assuntos
Biotina/química , Modelos Químicos , Simulação de Dinâmica Molecular , Estreptavidina/química , Ligação Proteica
8.
Proc Natl Acad Sci U S A ; 115(41): 10333-10338, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30181288

RESUMO

Gloeobacter violaceus ligand-gated ion channel (GLIC), a proton-gated, cation-selective channel, is a prokaryotic homolog of the pentameric Cys-loop receptor ligand-gated ion channel family. Despite large changes in ion conductance, small conformational changes were detected in X-ray structures of detergent-solubilized GLIC at pH 4 (active/desensitized state) and pH 7 (closed state). Here, we used high-speed atomic force microscopy (HS-AFM) combined with a buffer exchange system to perform structural titration experiments to visualize GLIC gating at the single-molecule level under native conditions. Reference-free 2D classification revealed channels in multiple conformational states during pH gating. We find changes of protein-protein interactions so far elusive and conformational dynamics much larger than previously assumed. Asymmetric pentamers populate early stages of activation, which provides evidence for an intermediate preactivated state.


Assuntos
Proteínas de Bactérias/química , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Microscopia de Força Atômica/métodos , Proteínas de Bactérias/metabolismo , Cianobactérias/química , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/fisiologia , Conformação Proteica
9.
Nano Lett ; 20(11): 7819-7827, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33119310

RESUMO

Enzymatic suicide inactivation, a route of permanent enzyme inhibition, is the mechanism of action for a wide array of pharmaceuticals. Here, we developed the first nanosensor that selectively reports the suicide inactivation pathway of an enzyme. The sensor is based on modulation of the near-infrared fluorescence of an enzyme-bound carbon nanotube. The nanosensor responded selectively to substrate-mediated suicide inactivation of the tyrosinase enzyme via bathochromic shifting of the nanotube emission wavelength. Mechanistic investigations revealed that singlet oxygen generated by the suicide inactivation pathway induced the response. We used the nanosensor to quantify the degree of enzymatic inactivation by measuring response rates to small molecule tyrosinase modulators. This work resulted in a new capability of interrogating a specific route of enzymatic death. Potential applications include drug screening and hit-validation for compounds that elicit or inhibit enzymatic inactivation and single-molecule measurements to assess population heterogeneity in enzyme activity.


Assuntos
Monofenol Mono-Oxigenase , Nanotubos de Carbono , Fluorescência , Humanos , Cinética , Monofenol Mono-Oxigenase/metabolismo , Nanotecnologia
10.
Proc Natl Acad Sci U S A ; 114(21): 5449-5454, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28484031

RESUMO

Dynamin is a dimeric GTPase that assembles into a helix around the neck of endocytic buds. Upon GTP hydrolysis, dynamin breaks these necks, a reaction called membrane fission. Fission requires dynamin to first constrict the membrane. It is unclear, however, how dynamin helix constriction works. Here we undertake a direct high-speed atomic force microscopy imaging analysis to visualize the constriction of single dynamin-coated membrane tubules. We show GTP-induced dynamic rearrangements of the dynamin helix turns: the average distances between turns reduce with GTP hydrolysis. These distances vary, however, over time because helical turns were observed to transiently pair and dissociate. At fission sites, these cycles of association and dissociation were correlated with relative lateral displacement of the turns and constriction. Our findings show relative longitudinal and lateral displacements of helical turns related to constriction. Our work highlights the potential of high-speed atomic force microscopy for the observation of mechanochemical proteins onto membranes during action at almost molecular resolution.


Assuntos
Dinaminas/metabolismo , Endocitose , Membrana Celular/fisiologia , Guanosina Trifosfato/metabolismo , Humanos , Microscopia de Força Atômica
11.
Proc Natl Acad Sci U S A ; 114(7): 1584-1588, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137870

RESUMO

Glutamate transporters are essential for recovery of the neurotransmitter glutamate from the synaptic cleft. Crystal structures in the outward- and inward-facing conformations of a glutamate transporter homolog from archaebacterium Pyrococcus horikoshii, sodium/aspartate symporter GltPh, suggested the molecular basis of the transporter cycle. However, dynamic studies of the transport mechanism have been sparse and indirect. Here we present high-speed atomic force microscopy (HS-AFM) observations of membrane-reconstituted GltPh at work. HS-AFM movies provide unprecedented real-space and real-time visualization of the transport dynamics. Our results show transport mediated by large amplitude 1.85-nm "elevator" movements of the transport domains consistent with previous crystallographic and spectroscopic studies. Elevator dynamics occur in the absence and presence of sodium ions and aspartate, but stall in sodium alone, providing a direct visualization of the ion and substrate symport mechanism. We show unambiguously that individual protomers within the trimeric transporter function fully independently.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas Arqueais/metabolismo , Membrana Celular/metabolismo , Microscopia de Força Atômica/métodos , Pyrococcus horikoshii/metabolismo , Sistema X-AG de Transporte de Aminoácidos/química , Proteínas Arqueais/química , Ácido Aspártico , Transporte Biológico , Cristalografia por Raios X , Ácido Glutâmico/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Sódio/metabolismo
12.
J Mol Recognit ; 32(3): e2773, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30565321

RESUMO

AFMBioMed is the founding name under which international conferences and summer schools are organized around the application of atomic force microscopy in life sciences and nanomedicine. From its inception at the Atomic Energy Commission in Marcoule near 2004 to its creation in 2007 and to its 10th anniversary conference in Krakow, a brief narrative history of its birth and rise will demonstrate how and what such an organization brings to laboratories and the AFM community. With the current planning of the next AFMBioMed conference in Münster in 2019, it will be 15 years of commitment to these events.


Assuntos
Microscopia de Força Atômica , Publicações Periódicas como Assunto/história , Congressos como Assunto , História do Século XX
14.
Nano Lett ; 18(1): 288-296, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29210266

RESUMO

The MinDE protein system from E. coli has recently been identified as a minimal biological oscillator, based on two proteins only: The ATPase MinD and the ATPase activating protein MinE. In E. coli, the system works as the molecular ruler to place the divisome at midcell for cell division. Despite its compositional simplicity, the molecular mechanism leading to protein patterns and oscillations is still insufficiently understood. Here we used high-speed atomic force microscopy to analyze the mechanism of MinDE membrane association/dissociation dynamics on isolated membrane patches, down to the level of individual point oscillators. This nanoscale analysis shows that MinD association to and dissociation from the membrane are both highly cooperative but mechanistically different processes. We propose that they represent the two directions of a single allosteric switch leading to MinD filament formation and depolymerization. Association/dissociation are separated by rather long apparently silent periods. The membrane-associated period is characterized by MinD filament multivalent binding, avidity, while the dissociated period is defined by seeding of individual MinD. Analyzing association/dissociation kinetics with varying MinD and MinE concentrations and dependent on membrane patch size allowed us to disentangle the essential dynamic variables of the MinDE oscillation cycle.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Microscopia de Força Atômica/métodos , Adenosina Trifosfatases/ultraestrutura , Regulação Alostérica , Proteínas de Ciclo Celular/ultraestrutura , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Cinética , Polimerização
15.
PLoS Pathog ; 12(4): e1005597, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27104344

RESUMO

Listeriolysin-O (LLO) plays a crucial role during infection by Listeria monocytogenes. It enables escape of bacteria from phagocytic vacuole, which is the basis for its spread to other cells and tissues. It is not clear how LLO acts at phagosomal membranes to allow bacterial escape. The mechanism of action of LLO remains poorly understood, probably due to unavailability of suitable experimental tools that could monitor LLO membrane disruptive activity in real time. Here, we used high-speed atomic force microscopy (HS-AFM) featuring high spatio-temporal resolution on model membranes and optical microscopy on giant unilamellar vesicles (GUVs) to investigate LLO activity. We analyze the assembly kinetics of toxin oligomers, the prepore-to-pore transition dynamics and the membrane disruption in real time. We reveal that LLO toxin efficiency and mode of action as a membrane-disrupting agent varies strongly depending on the membrane cholesterol concentration and the environmental pH. We discovered that LLO is able to form arc pores as well as damage lipid membranes as a lineactant, and this leads to large-scale membrane defects. These results altogether provide a mechanistic basis of how large-scale membrane disruption leads to release of Listeria from the phagocytic vacuole in the cellular context.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Listeria monocytogenes/patogenicidade , Listeriose/metabolismo , Fagossomos/microbiologia , Animais , Linhagem Celular , Colesterol/metabolismo , Citometria de Fluxo , Microscopia de Força Atômica , Microscopia Confocal
16.
Biochim Biophys Acta Gen Subj ; 1862(2): 229-240, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28716648

RESUMO

BACKGROUND: Many biological processes in a living cell are consequences of sequential and hierarchical dynamic events of biological macromolecules such as molecular interactions and conformational changes. Hence, knowledge of structures, assembly and dynamics of proteins is the foundation for understanding how biological molecules work. Among several techniques to analyze dynamics of proteins, high-speed atomic force microscopy (HS-AFM) is unique to provide direct information about both structure and dynamics of single proteins at work. SCOPE OF REVIEW: The scope of this review is overviewing recent progresses of HS-AFM for studying dynamic processes of biomolecular systems. In the technical descriptions, key developments enabling fast and non-invasive imaging of biological samples are briefly mentioned. Then recent successful applications of HS-AFM are overviewed to showcase the power of HS-AFM in biological research. MAJOR CONCLUSIONS: We discuss examples where HS-AFM movies captured important dynamic biological processes, including conformational dynamics of membrane proteins, processive movements of enzymes, assembly and disassembly processes of protein supramolecular structures, and dynamics in a two-dimensional protein crystal. These examples demonstrate the usability of HS-AFM to reveal biomolecular processes at high spatiotemporal (nanometer and subsecond) resolution. GENERAL SIGNIFICANCE: Real-time movies of unlabeled proteins at work captured by HS-AFM allowed us to directly gain insights into mechanisms of molecular actions. Together with further functional extensions, HS-AFM will enable researchers to investigate more complex biological systems involving multiple proteins and will become an indispensable technique for life science. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" Guest Editor: Dr., Professor Koichi Kato.


Assuntos
Biologia Computacional , Microscopia de Força Atômica , Modelos Biológicos , Simulação de Dinâmica Molecular , Proteínas/metabolismo , Animais , Cristalografia , Desenho de Equipamento , Humanos , Cinética , Microscopia de Força Atômica/instrumentação , Conformação Proteica , Multimerização Proteica , Transporte Proteico , Proteínas/química , Relação Estrutura-Atividade
17.
Biophys J ; 113(9): 2029-2036, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117526

RESUMO

Pore-forming toxins form a family of proteins that act as virulence factors of pathogenic bacteria, but similar proteins are found in all kingdoms of life, including the vertebrate immune system. They are secreted as soluble monomers that oligomerize on target membranes in the so-called prepore state; after activation, they insert into the membrane and adopt the pore state. Lysenin is a pore-forming toxin from the earthworm Eisenida foetida, of which both the soluble and membrane-inserted structures are solved. However, the activation and membrane-insertion mechanisms have remained elusive. Here, we used high-speed atomic force microscopy to directly visualize the membrane-insertion mechanism. Changing the environmental pH from pH 7.5 to below pH 6.0 favored membrane insertion. We detected a short α-helix in the soluble structure that comprised three glutamic acids (Glu92, Glu94, and Glu97) that we hypothesized may represent a pH-sensor (as in similar toxins, e.g., Listeriolysin). Mutant lysenin still can form pores, but mutating these glutamic acids to glutamines rendered the toxin pH-insensitive. On the other hand, toxins in the pore state did not favor insertion of neighboring prepores; indeed, pore insertion breaks the hexagonal ordered domains of prepores and separates from neighboring molecules in the membrane. pH-dependent activation of toxins may represent a common feature of pore-forming toxins. High-speed atomic force microscopy with single-molecule resolution at high temporal resolution and the possibility of exchanging buffers during the experiments presents itself as a unique tool for the study of toxin-state conversion.


Assuntos
Membrana Celular/metabolismo , Toxinas Biológicas/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Porosidade , Conformação Proteica em alfa-Hélice , Toxinas Biológicas/química
18.
J Biol Chem ; 291(37): 19210-19219, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27445331

RESUMO

Pore-forming toxins (PFTs) are cytolytic proteins belonging to the molecular warfare apparatus of living organisms. The assembly of the functional transmembrane pore requires several intermediate steps ranging from a water-soluble monomeric species to the multimeric ensemble inserted in the cell membrane. The non-lytic oligomeric intermediate known as prepore plays an essential role in the mechanism of insertion of the class of ß-PFTs. However, in the class of α-PFTs, like the actinoporins produced by sea anemones, evidence of membrane-bound prepores is still lacking. We have employed single-particle cryo-electron microscopy (cryo-EM) and atomic force microscopy to identify, for the first time, a prepore species of the actinoporin fragaceatoxin C bound to lipid vesicles. The size of the prepore coincides with that of the functional pore, except for the transmembrane region, which is absent in the prepore. Biochemical assays indicated that, in the prepore species, the N terminus is not inserted in the bilayer but is exposed to the aqueous solution. Our study reveals the structure of the prepore in actinoporins and highlights the role of structural intermediates for the formation of cytolytic pores by an α-PFT.


Assuntos
Venenos de Cnidários/química , Membranas Artificiais , Proteínas Citotóxicas Formadoras de Poros/química , Anêmonas-do-Mar/química , Animais , Microscopia Crioeletrônica , Microscopia de Força Atômica
19.
Biophys J ; 111(2): 363-372, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27463138

RESUMO

Many drugs and other xenobiotics may reach systemic concentrations where they interact not only with the proteins that are their therapeutic targets but also modify the physicochemical properties of the cell membrane, which may lead to altered function of many transmembrane proteins beyond the intended targets. These changes in bilayer properties may contribute to nonspecific, promiscuous changes in membrane protein and cell function because membrane proteins are energetically coupled to their host lipid bilayer. It is thus important, for both pharmaceutical and biophysical reasons, to understand the bilayer-modifying effect of amphiphiles (including therapeutic agents). Here we use atomic force microscopy topography imaging and nanomechanical mapping to monitor the effect of statins, a family of hypolipidemic drugs, on synthetic lipid membranes. Our results reveal that statins alter the nanomechanical stability of the bilayers and increase their elastic moduli depending on the lipid bilayer order. Our results also suggest that statins increase bilayer heterogeneity, which may indicate that statins form nanometer-sized aggregates in the membrane. This is further evidence that changes in bilayer nanoscale mechanical properties may be a signature of lipid bilayer-mediated effects of amphiphilic drugs.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Bicamadas Lipídicas/metabolismo , Fenômenos Mecânicos/efeitos dos fármacos , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Fenômenos Biomecânicos/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Elasticidade/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Fosfatidilcolinas/metabolismo
20.
Small ; 12(44): 6106-6113, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27647753

RESUMO

With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa