Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(23): 6086-6102, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34543498

RESUMO

Biological invasions represent one of the main threats to marine biodiversity. From a conservation perspective, especially in the context of increasing sea warming, it is critical to examine the suitability potential of geographical areas for the arrival of Range-Expanding Introduced and Native Species (REINS), and hence anticipate the risk of such species to become invasive in their new distribution areas. Here, we developed an empirical index, based on functional and bio-ecological traits, that estimates the Invasive Potential (IP; i.e. the potential success in transport, introduction and population establishment) for a set of 13 fishes that are expanding their distributional range into the Mediterranean Sea, the most invaded sea in the world. The IP index showed significant correlation with the observed spreading of REINS. For the six species characterized by the highest IP, we calculated contemporary and future projections of their Environmental Suitability Index (ESI). By using an ensemble modelling approach, we estimated the geographical areas that are likely to be the most impacted by REINS spreading under climate change. Our results demonstrated the importance of functional traits related to reproduction for determining high invasion potential. For most species, we found high contemporary ESI values in the South-eastern Mediterranean Sea and low to intermediate contemporary ESI values in the Adriatic Sea and North-western Mediterranean sector. Moreover, we highlighted a major potential future expansion of high ESI values, and thus REINS IP, towards the northern Mediterranean, especially in the northern Adriatic Sea. This potential future northward expansion highlights the risk associated with climate-induced impacts on ecosystem conservation and fish stock management throughout the entire Mediterranean Sea.


Assuntos
Mudança Climática , Espécies Introduzidas , Animais , Ecossistema , Peixes , Mar Mediterrâneo
2.
Sci Total Environ ; 879: 163055, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36972882

RESUMO

The Mediterranean Sea is a hotspot of global warming where key commercial species, such as demersal and pelagic fishes, and cephalopods, could experience abrupt distribution shifts in the near future. However, the extent to which these range shifts may impact fisheries catch potential remains poorly understood at the scale of Exclusive Economic Zones (EEZs). Here, we evaluated the projected changes in Mediterranean fisheries catches potential, by target fishing gears, under different climate scenarios throughout the 21st century. We show that the future Mediterranean maximum catch potential may decrease considerably by the end of the century under high emission scenarios in South Eastern Mediterranean countries. These projected decreases range between -20 to -75 % for catch by pelagic trawl and seine, -50 to -75 % for fixed nets and traps and exceed -75 % for benthic trawl. In contrast, fixed nets and traps, and benthic trawl fisheries may experience an increase in their catch potential in the North and Celtic seas, while future catches by pelagic trawl and seine may decrease in the same areas. We show that a high emission scenario may considerably amplify the future redistribution of fisheries catch potential across European Seas, thus highlighting the need to limit global warming. Our projections at the manageable scale of EEZ and the quantification of climate-induced impacts on a large part of the Mediterranean and European fisheries is therefore a first, and considerable step toward the development of climate mitigation and adaptations strategies for the fisheries sector.


Assuntos
Mudança Climática , Ecossistema , Animais , Pesqueiros , Mar Mediterrâneo , Aquecimento Global , Peixes
3.
Sci Rep ; 12(1): 10150, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710852

RESUMO

Fisheries and aquaculture are facing many challenges worldwide, especially adaptation to climate change. Investigating future distributional changes of largely harvested species has become an extensive research topic, aiming at providing realistic ecological scenarios on which to build management measures, to help fisheries and aquaculture adapt to future climate-driven changes. Here, we use an ensemble modelling approach to estimate the contemporary and future distributional range of eight demersal fish species of high economic value in the Mediterranean Sea. We identify a cardinal influence of (i) temperature on fish species distributions, all being shaped by yearly mean and seasonality in sea bottom temperature, and (ii) the primary production. By assessing the effects of changes in future climate conditions under three Representative Concentration Pathway (RCP2.6, RCP4.5 and RCP8.5) scenarios over three periods of the twenty-first century, we project a contraction of the distributional range of the eight species in the Mediterranean Sea, with a general biogeographical displacement towards the North European coasts. This will help anticipating changes in future catch potential in a warmer world, which is expected to have substantial economic consequences for Mediterranean fisheries.


Assuntos
Pesqueiros , Peixes , Animais , Aquicultura , Mudança Climática , Ecossistema , Mar Mediterrâneo
4.
Sci Rep ; 11(1): 3930, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594145

RESUMO

In a context of increasing anthropogenic pressure, projecting species potential distributional shifts is of major importance for the sustainable exploitation of marine species. Despite their major economical (i.e. important fisheries) and ecological (i.e. central position in food-webs) importance, cephalopods literature rarely addresses an explicit understanding of their current distribution and the potential effect that climate change may induce in the following decades. In this study, we focus on three largely harvested and common cephalopod species in Europe: Octopus vulgaris, Sepia officinalis and Loligo vulgaris. Using a recently improved species ensemble modelling framework coupled with five atmosphere-ocean general circulation models, we modelled their contemporary and potential future distributional range over the twenty-first century. Independently of global warming scenarios, we observed a decreasing in the suitability of environmental conditions in the Mediterranean Sea and the Bay of Biscay. Conversely, we projected a rapidly increasing environmental suitability in the North, Norwegian and Baltic Seas for all species. This study is a first broad scale assessment and identification of the geographical areas, fisheries and ecosystems impacted by climate-induced changes in cephalopods distributional range.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa