Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 92(11): 7972-7979, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32383592

RESUMO

Over the past few years, structures for lossless ion manipulations (SLIM) have used traveling waves (TWs) to move ions over long serpentine paths that can be further lengthened by routing the ions through multiple passages of the same path. Such SLIM "multipass" separations provide unprecedentedly high ion mobility resolving powers but are ultimately limited in their ion mobility range because of the range of mobilities spanned in a single pass; that is, higher mobility ions ultimately "overtake" and "lap" lower mobility ions that have experienced fewer passes, convoluting their arrival time distribution at the detector. To achieve ultrahigh resolution separations over broader mobility ranges, we have developed a new multilevel SLIM possessing multiple stacked serpentine paths. Ions are transferred between SLIM levels through apertures (or ion escalators) in the SLIM surfaces. The initial multilevel SLIM module incorporates four levels and three interlevel ion escalator passages, providing a total path length of 43.2 m. Using the full path length and helium buffer gas, high resolution separations were achieved for Agilent tuning mixture phosphazene ions over a broad mobility range (K0 ≈ 3.0 to 1.2 cm2/(V*s)). High sensitivity was achieved using "in-SLIM" ion accumulation over an extended trapping region of the first SLIM level. High transmission efficiency of ions over a broad mobility range (e.g., K0 ≈ 3.0 to 1.67 cm2/(V*s)) was achieved, with transmission efficiency rolling off for the lower mobility ions (e.g., K0 ≈ 1.2 cm2/(V*s)). Resolving powers of up to ∼560 were achieved using all four ion levels to separate reverse peptides (SDGRG1+ and GRGDS1+). A complex mixture of phosphopeptides showed similar coverage could be achieved using one or all four SLIM levels, and doubly charged phosphosite isomers not significantly separated using one SLIM level were well resolved when four levels were used. The new multilevel SLIM technology thus enables wider mobility range ultrahigh-resolution ion mobility separations and expands on the ability of SLIM to obtain improved separations of complex mixtures with high sensitivity.


Assuntos
Fosfopeptídeos/análise , Espectrometria de Mobilidade Iônica , Íons/química , Conformação Proteica , Estereoisomerismo , Propriedades de Superfície
2.
J Am Soc Mass Spectrom ; 30(6): 967-976, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30834510

RESUMO

Here, we present simulations and describe the initial implementation of a device capable of performing simultaneous ion mobility (IM) separations of positive and negative ions based upon the structures for lossless ion manipulations (SLIM). To achieve dual polarity ion confinement, the DC fields used for lateral confinement in previous SLIM were replaced with RF fields. Concurrent ion transport and mobility separation in the SLIM device are shown possible due to the nature of the traveling wave (TW) voltage profile which has potential minima at opposite sides of the wave for each ion polarity. We explored the potential for performing simultaneous IM separations of cations and anions over the same SLIM path and the impacts on the achievable IM resolution and resolving power. Initial results suggest comparable IM performance with previous single-polarity SLIM separations can be achieved. We also used ion trajectory simulations to investigate the capability to manipulate the spatial distributions of ion populations based on their polarities by biasing the RF fields and TW potentials on each SLIM surface so as to limit the interactions between opposite polarity ions. Graphical Abstract.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa