Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Can J Microbiol ; 70(1): 15-31, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699259

RESUMO

Cold stress is an important factor limiting rice production and distribution. Identifying factors that contribute to cold tolerance in rice is of primary importance. While some plant specific genetic factors involved in cold tolerance have been identified, the role of the rice microbiome remains unexplored. In this study, we evaluated the influence of plant growth promoting bacteria (PGPB) with the ability of phosphate solubilization on rice cold tolerance and survival. To reach this goal, inoculated and uninoculated 2-week-old seedlings were cold stressed and evaluated for survival and other phenotypes such as electrolyte leakage (EL) and necessary elements for cold tolerance. The results of this study showed that of the five bacteria, Pseudomonas mosselii, improved both indica and japonica varietal plants' survival and decreased EL, indicating increased membrane integrity. We observed different possible cold tolerance mechanisms in japonica and indica plants such as increases in proline and reduced glutathione levels, respectively. This bacterium also improved the shoot growth of cold exposed indica plants during the recovery period. This study confirmed the host genotype dependent activity of P. mosselii and indicated that there is an interaction between specific plant genes and bacterial genes that causes different plant responses to cold stress.


Assuntos
Glutationa , Oryza , Glutationa/genética , Prolina/genética , Genótipo , Temperatura Baixa
2.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232853

RESUMO

Stress-associated protein (SAP) genes-encoding A20/AN1 zinc-finger domain-containing proteins-play pivotal roles in regulating stress responses, growth, and development in plants. They are considered suitable candidates to improve abiotic stress tolerance in plants. However, the SAP gene family in sweetpotato (Ipomoea batatas) and its relatives is yet to be investigated. In this study, 20 SAPs in sweetpotato, and 23 and 26 SAPs in its wild diploid relatives Ipomoea triloba and Ipomoea trifida were identified. The chromosome locations, gene structures, protein physiological properties, conserved domains, and phylogenetic relationships of these SAPs were analyzed systematically. Binding motif analysis of IbSAPs indicated that hormone and stress responsive cis-acting elements were distributed in their promoters. RT-qPCR or RNA-seq data revealed that the expression patterns of IbSAP, ItbSAP, and ItfSAP genes varied in different organs and responded to salinity, drought, or ABA (abscisic acid) treatments differently. Moreover, we found that IbSAP16 driven by the 35 S promoter conferred salinity tolerance in transgenic Arabidopsis. These results provided a genome-wide characterization of SAP genes in sweetpotato and its two relatives and suggested that IbSAP16 is involved in salinity stress responses. Our research laid the groundwork for studying SAP-mediated stress response mechanisms in sweetpotato.


Assuntos
Arabidopsis , Ipomoea batatas , Ipomoea , Ácido Abscísico/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/metabolismo , Hormônios/metabolismo , Ipomoea/genética , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Zinco/metabolismo , Dedos de Zinco/genética
3.
J Exp Bot ; 71(9): 2723-2739, 2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31974553

RESUMO

Due to its subtropical origins, rice (Oryza sativa) is sensitive to low-temperature stress. In this study, we identify LOC_Os04g24110, annotated to encode the UDP-glycosyltransferase enzyme UGT90A1, as a gene associated with the low-temperature seedling survivability (LTSS) quantitative trait locus qLTSS4-1. Differences between haplotypes in the control region of OsUGT90A1 correlate with chilling tolerance phenotypes, and reflect differential expression between tolerant and sensitive accessions rather than differences in protein sequences. Expression of OsUGT90A1 is initially enhanced by low temperature, and its overexpression helps to maintain membrane integrity during cold stress and promotes leaf growth during stress recovery, which are correlated with reduced levels of reactive oxygen species due to increased activities of antioxidant enzymes. In addition, overexpression of OsUGT90A1 in Arabidopsis improves freezing survival and tolerance to salt stress, again correlated with enhanced activities of antioxidant enzymes. Overexpression of OsUGT90A1 in rice decreases root lengths in 3-week-old seedlings while gene-knockout increases the length, indicating that its differential expression may affect phytohormone activities. We conclude that higher OsUGT90A1 expression in chilling-tolerant accessions helps to maintain cell membrane integrity as an abiotic stress-tolerance mechanism that prepares plants for the resumption of growth and development during subsequent stress recovery.


Assuntos
Oryza , Membrana Celular , Temperatura Baixa , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Oryza/genética , Plântula/genética
4.
Plant Biotechnol J ; 17(9): 1834-1849, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30811812

RESUMO

Cold temperature during the reproductive stage often causes great yield loss of grain crops in subtropical and temperate regions. Previously we showed that the rice transcription factor bZIP73Jap plays an important role in cold adaptation at the seedling stage. Here we further demonstrate that bZIP73Jap also confers cold stress tolerance at the reproductive stage. bZIP73Jap was up-regulated under cold treatment and predominately expressed in panicles at the early binucleate and flowering stages. bZIP73Jap forms heterodimers with bZIP71, and co-expression of bZIP73Jap and bZIP71 transgenic lines significantly increased seed-setting rate and grain yield under natural cold stress conditions. bZIP73Jap :bZIP71 not only repressed ABA level in anthers, but also enhanced soluble sugar transport from anthers to pollens and improved pollen grain fertility, seed-setting rate, and grain yield. Interestingly, bZIP73Jap :bZIP71 also regulated the expression of qLTG3-1Nip , and qLTG3-1Nip overexpression lines greatly improved rice tolerance to cold stress during the reproductive stage. Therefore, our work establishes a framework for rice cold stress tolerance through the bZIP71-bZIP73Jap -qLTG3-1Nip -sugar transport pathway. Together with our previous work, our results provide a powerful tool for improving rice cold stress tolerance at both the seedling and the reproductive stages.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Temperatura Baixa , Oryza/fisiologia , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Estresse Fisiológico
5.
PLoS Genet ; 7(7): e1002196, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21829379

RESUMO

Photosynthesis is the final determinator for crop yield. To gain insight into genes controlling photosynthetic capacity, we selected from our large T-DNA mutant population a rice stunted growth mutant with decreased carbon assimilate and yield production named photoassimilate defective1 (phd1). Molecular and biochemical analyses revealed that PHD1 encodes a novel chloroplast-localized UDP-glucose epimerase (UGE), which is conserved in the plant kingdom. The chloroplast localization of PHD1 was confirmed by immunoblots, immunocytochemistry, and UGE activity in isolated chloroplasts, which was approximately 50% lower in the phd1-1 mutant than in the wild type. In addition, the amounts of UDP-glucose and UDP-galactose substrates in chloroplasts were significantly higher and lower, respectively, indicating that PHD1 was responsible for a major part of UGE activity in plastids. The relative amount of monogalactosyldiacylglycerol (MGDG), a major chloroplast membrane galactolipid, was decreased in the mutant, while the digalactosyldiacylglycerol (DGDG) amount was not significantly altered, suggesting that PHD1 participates mainly in UDP-galactose supply for MGDG biosynthesis in chloroplasts. The phd1 mutant showed decreased chlorophyll content, photosynthetic activity, and altered chloroplast ultrastructure, suggesting that a correct amount of galactoglycerolipids and the ratio of glycolipids versus phospholipids are necessary for proper chloroplast function. Downregulated expression of starch biosynthesis genes and upregulated expression of sucrose cleavage genes might be a result of reduced photosynthetic activity and account for the decreased starch and sucrose levels seen in phd1 leaves. PHD1 overexpression increased photosynthetic efficiency, biomass, and grain production, suggesting that PHD1 plays an important role in supplying sufficient galactolipids to thylakoid membranes for proper chloroplast biogenesis and photosynthetic activity. These findings will be useful for improving crop yields and for bioenergy crop engineering.


Assuntos
Galactolipídeos/biossíntese , Oryza/enzimologia , Fotossíntese/genética , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo , Carbono/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas , Homeostase/genética , Espaço Intracelular/metabolismo , Mutação/genética , Oryza/classificação , Oryza/genética , Fenótipo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico/genética
6.
Front Plant Sci ; 14: 1303651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162313

RESUMO

Due to global climate change resulting in extreme temperature fluctuations, it becomes increasingly necessary to explore the natural genetic variation in model crops such as rice to facilitate the breeding of climate-resilient cultivars. To uncover genomic regions in rice involved in managing cold stress tolerance responses and to identify associated cold tolerance genes, two inbred line populations developed from crosses between cold-tolerant and cold-sensitive parents were used for quantitative trait locus (QTL) mapping of two traits: degree of membrane damage after 1 week of cold exposure quantified as percent electrolyte leakage (EL) and percent low-temperature seedling survivability (LTSS) after 1 week of recovery growth. This revealed four EL QTL and 12 LTSS QTL, all overlapping with larger QTL regions previously uncovered by genome-wide association study (GWAS) mapping approaches. Within the QTL regions, 25 cold-tolerant candidate genes were identified based on genomic differences between the cold-tolerant and cold-sensitive parents. Of those genes, 20% coded for receptor-like kinases potentially involved in signal transduction of cold tolerance responses; 16% coded for transcription factors or factors potentially involved in regulating cold tolerance response effector genes; and 64% coded for protein chaperons or enzymes potentially serving as cold tolerance effector proteins. Most of the 25 genes were cold temperature regulated and had deleterious nucleotide variants in the cold-sensitive parent, which might contribute to its cold-sensitive phenotype.

7.
Microbiol Spectr ; 10(4): e0278721, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862989

RESUMO

Asian rice is one of the most important crops because it is a staple food for almost half of the world's population. To have production of rice keep pace with a growing world population, it is anticipated that the use of fertilizers will also need to increase, which may cause environmental damage through runoff impacts. An alternative strategy to increase crop yield is the use of plant growth-promoting bacteria. Thousands of microbial species can exist in association with plant roots and shoots, and some are critical to the plant's survival. We isolated 140 bacteria from two distantly related rice accessions and investigated whether their impact on the growth of four different rice accessions. The bacterial isolates were screened for their ability to solubilize phosphate, a known plant growth-promoting characteristic, and 25 isolates were selected for further analysis. These 25 phosphate-solubilizing isolates were also able to produce other potentially growth-promoting factors. Five of the most promising bacterial isolates were chosen for whole-genome sequencing. Four of these bacteria, isolates related to Pseudomonas mosselii, a Microvirga sp., Paenibacillus rigui, and Paenibacillus graminis, improved root and shoot growth in a rice genotype-dependent manner. This indicates that while bacteria have several known plant growth-promoting functions, their effects on growth parameters are rice genotype dependent and suggest a close relationship between plants and their microbial partners. IMPORTANCE In this study, endophytic bacterial isolates from roots and shoots of two distantly related rice accessions were characterized phenotypically and genotypically. From the isolated bacterial species, five of the most promising plant growth-promoting bacteria were selected to test their abilities to enhance growth of the four rice accessions. Interestingly, plant growth enhancement was both bacterial isolate specific and plant genotype specific. However, the positive interactions between plant and bacteria could not easily be predicted because rice growth-promoting bacteria isolated from their host plants did not necessarily stimulate growth of their own host.


Assuntos
Oryza , Genótipo , Oryza/microbiologia , Fosfatos , Raízes de Plantas/microbiologia
8.
Nat Commun ; 9(1): 3302, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120236

RESUMO

Cold stress is a major factor limiting production and geographic distribution of rice (Oryza sativa). Although the growth range of japonica subspecies has expanded northward compared to modern wild rice (O. rufipogon), the molecular basis of the adaptation remains unclear. Here we report bZIP73, a bZIP transcription factor-coding gene with only one functional polymorphism (+511 G>A) between the two subspecies japonica and indica, may have facilitated japonica adaptation to cold climates. We show the japonica version of bZIP73 (bZIP73Jap) interacts with bZIP71 and modulates ABA levels and ROS homeostasis. Evolutionary and population genetic analyses suggest bZIP73 has undergone balancing selection; the bZIP73Jap allele has firstly selected from standing variations in wild rice and likely facilitated cold climate adaptation during initial japonica domestication, while the indica allele bZIP73Ind was subsequently selected for reasons that remain unclear. Our findings reveal early selection of bZIP73Jap may have facilitated climate adaptation of primitive rice germplasms.


Assuntos
Adaptação Fisiológica/genética , Clima Frio , Genes de Plantas , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Seleção Genética , Ácido Abscísico/metabolismo , Estudos de Associação Genética , Geografia , Modelos Genéticos , Filogenia , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética
9.
Front Plant Sci ; 8: 957, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642772

RESUMO

Rice (Oryza sativa L.) is often exposed to cool temperatures during spring planting in temperate climates. A better understanding of genetic pathways regulating chilling tolerance will enable breeders to develop varieties with improved tolerance during germination and young seedling stages. To dissect chilling tolerance, five assays were developed; one assay for the germination stage, one assay for the germination and seedling stage, and three for the seedling stage. Based on these assays, five chilling tolerance indices were calculated and assessed using 202 O. sativa accessions from the Rice Mini-Core (RMC) collection. Significant differences between RMC accessions made the five indices suitable for genome-wide association study (GWAS) based quantitative trait loci (QTL) mapping. For young seedling stage indices, japonica and indica subspecies clustered into chilling tolerant and chilling sensitive accessions, respectively, while both subspecies had similar low temperature germinability distributions. Indica subspecies were shown to have chilling acclimation potential. GWAS mapping uncovered 48 QTL at 39 chromosome regions distributed across all 12 rice chromosomes. Interestingly, there was no overlap between the germination and seedling stage QTL. Also, 18 QTL and 32 QTL were in regions discovered in previously reported bi-parental and GWAS based QTL mapping studies, respectively. Two novel low temperature seedling survivability (LTSS)-QTL, qLTSS3-4 and qLTSS4-1, were not in a previously reported QTL region. QTL with strong effect alleles identified in this study will be useful for marker assisted breeding efforts to improve chilling tolerance in rice cultivars and enhance gene discovery for chilling tolerance.

10.
Nat Commun ; 6: 7658, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26203923

RESUMO

Priming is a major mechanism behind the immunological 'memory' observed during two key plant systemic defences: systemic acquired resistance (SAR) and induced systemic resistance (ISR). Lipid-derived azelaic acid (AZA) is a mobile priming signal. Here, we show that the lipid transfer protein (LTP)-like AZI1 and its closest paralog EARLI1 are necessary for SAR, ISR and the systemic movement and uptake of AZA in Arabidopsis. Imaging and fractionation studies indicate that AZI1 and EARLI1 localize to expected places for lipid exchange/movement to occur. These are the ER/plasmodesmata, chloroplast outer envelopes and membrane contact sites between them. Furthermore, these LTP-like proteins form complexes and act at the site of SAR establishment. The plastid targeting of AZI1 and AZI1 paralogs occurs through a mechanism that may enable/facilitate their roles in signal mobilization.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Sequência de Aminoácidos , Arabidopsis/imunologia , Dados de Sequência Molecular , Domínios Proteicos Ricos em Prolina
11.
J Genet Genomics ; 41(6): 327-38, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24976122

RESUMO

Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the level of ZH11; however, its ABA/GA ratio maintained at a high level throughout seed development. By contrast, G46B had the lowest ABA content during seed development though at early developmental stage its ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the same level of ZH11. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-imposed dormancy.


Assuntos
Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Hormônios/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Oryza/crescimento & desenvolvimento , Dormência de Plantas , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Transcriptoma
12.
Plant Physiol ; 142(4): 1728-38, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17056759

RESUMO

The Landsberg erecta (Ler) accession of Arabidopsis (Arabidopsis thaliana) has a weak allele of the floral inhibitor FLOWERING LOCUS C (FLC). FLC-Ler is weakly up-regulated by the active San Feliu-2 (Sf2) allele of FRIGIDA (FRI-Sf2), resulting in a moderately late-flowering phenotype. By contrast, the Columbia (Col) allele of FLC is strongly up-regulated by FRI-Sf2, resulting in a very late-flowering phenotype. In Col, the FRI-related gene FRI LIKE 1 (FRL1) is required for FRI-mediated up-regulation of FLC. It is shown here that in Ler, the FRL1-related gene FRI LIKE 2 (FRL2), but not FRL1, is required for FRI-mediated up-regulation of FLC. FRL1-Ler is shown to be a nonsense allele of FRL1 due to a naturally occurring premature stop codon in the middle of the conceptual protein sequence, suggesting that FRL1-Ler is nonfunctional. Compared to FRL2-Col, FRL2-Ler has two amino acid changes in the conceptual protein sequence. Plants homozygous for FRI-Sf2, FLC-Ler, FRL1-Ler, and FRL2-Col have no detectable FLC expression, resulting in an extremely early flowering phenotype. Transformation of a genomic fragment of FRL2-Ler, but not of FRL2-Col, into a recombinant inbred line derived from these plants restores both FRI-mediated up-regulation of FLC expression and a late-flowering phenotype, indicating that FRL2-Ler is the functional allele of FRL2. Taken together, these results suggest that in the two different Arabidopsis accessions Col and Ler, either FRL1 or FRL2, but not both, is functional and required for FRI-mediated up-regulation of FLC.


Assuntos
Alelos , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Códon sem Sentido , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Fenótipo , Fotoperíodo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa