Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Circ Res ; 127(4): 466-482, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32404031

RESUMO

RATIONALE: Endothelial cells (ECs) are highly glycolytic and generate the majority of their energy via the breakdown of glucose to lactate. At the same time, a main role of ECs is to allow the transport of glucose to the surrounding tissues. GLUT1 (glucose transporter isoform 1/Slc2a1) is highly expressed in ECs of the central nervous system (CNS) and is often implicated in blood-brain barrier (BBB) dysfunction, but whether and how GLUT1 controls EC metabolism and function is poorly understood. OBJECTIVE: We evaluated the role of GLUT1 in endothelial metabolism and function during postnatal CNS development as well as at the adult BBB. METHODS AND RESULTS: Inhibition of GLUT1 decreases EC glucose uptake and glycolysis, leading to energy depletion and the activation of the cellular energy sensor AMPK (AMP-activated protein kinase), and decreases EC proliferation without affecting migration. Deletion of GLUT1 from the developing postnatal retinal endothelium reduces retinal EC proliferation and lowers vascular outgrowth, without affecting the number of tip cells. In contrast, in the brain, we observed a lower number of tip cells in addition to reduced brain EC proliferation, indicating that within the CNS, organotypic differences in EC metabolism exist. Interestingly, when ECs become quiescent, endothelial glycolysis is repressed, and GLUT1 expression increases in a Notch-dependent fashion. GLUT1 deletion from quiescent adult ECs leads to severe seizures, accompanied by neuronal loss and CNS inflammation. Strikingly, this does not coincide with BBB leakiness, altered expression of genes crucial for BBB barrier functioning nor reduced vascular function. Instead, we found a selective activation of inflammatory and extracellular matrix related gene sets. CONCLUSIONS: GLUT1 is the main glucose transporter in ECs and becomes uncoupled from glycolysis during quiescence in a Notch-dependent manner. It is crucial for developmental CNS angiogenesis and adult CNS homeostasis but does not affect BBB barrier function.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Transportador de Glucose Tipo 1/fisiologia , Neovascularização Fisiológica , Vasos Retinianos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Encéfalo/citologia , Movimento Celular , Proliferação de Células , Células Endoteliais/fisiologia , Endotélio , Endotélio Vascular/fisiologia , Metabolismo Energético , Glucose/metabolismo , Transportador de Glucose Tipo 1/antagonistas & inibidores , Glicólise , Humanos , Camundongos , Retina/citologia
2.
Neuroimage ; 177: 30-44, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29730495

RESUMO

Mouse fMRI is critically useful to investigate functions of mouse models. Until now, the somatosensory-evoked responses in anesthetized mice are often widespread and inconsistent across reports. Here, we adopted a ketamine and xylazine mixture for mouse fMRI, which is relatively new anesthetics in fMRI experiments. Forepaw stimulation frequency was optimized using cerebral blood volume (CBV)-weighted optical imaging (n = 11) and blood-oxygenation-level dependent (BOLD) fMRI with a gradient-echo time of 16 ms at 9.4 T, and 4 Hz stimulation with 0.5 ms and 0.5 mA pulses induced the highest hemodynamic response. For 20-s 4-Hz unilateral forepaw stimulation, localized BOLD activity was consistently found in the contralateral primary forelimb somatosensory cortex (S1FL), while no significant change was observed in the ipsilateral S1FL. The mean magnitude was 1.44 ±â€¯0.20% SEM (n = 9) in the contralateral S1FL and 0.69 ±â€¯0.10% in the contralateral thalamus. The variability of evoked fMRI responses across sessions was investigated by comparing with resting state fMRI (rsfMRI) functional connectivity (FC). Evoked responses in S1FL were correlated positively with rsfMRI FC between bilateral S1FL (r = 0.63 to 0.69) and negatively with FC between S1FL and the anterior cingulate cortex (r = -0.50 to -0.57), suggesting that rsfMRI FC is a good index of the evoked fMRI response and anesthetized animal condition. Finally, three weekly fMRI scans were performed in 5 mice, and localized activity was reproducibly observed in S1FL, with a success rate of 70-95%. In summary, our developed fMRI protocol can be used for mapping functions of mouse models.


Assuntos
Anestésicos/administração & dosagem , Neuroimagem Funcional/métodos , Ketamina/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Córtex Somatossensorial/fisiologia , Xilazina/administração & dosagem , Animais , Circulação Cerebrovascular/fisiologia , Estimulação Elétrica , Membro Anterior/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Imagem Óptica , Córtex Somatossensorial/diagnóstico por imagem
3.
Neuroimage ; 116: 40-9, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25979665

RESUMO

In recent years, the number of functional MRI (fMRI) studies in mice has been rapidly increasing. Technological improvements provide the sensitivity required to match the high demands on spatial and temporal resolution and to analyze fast and small signal components of the fMRI response. Yet, the interpretation of mouse fMRI data largely relies on assumptions that were uncritically adopted from previous research in humans or rats. Here, we show based on a large dataset employing an innocuous electrical stimulation paradigm, that (1) the shape of the HRF shapes comprises significant transient signal components; correspondingly analysis procedures have to account for this dynamic nature and allow for variable response functions. (2) The effects of the anesthetics are crucial in determining the shape of the hemodynamic response function (HRF) and also influence the spatial specificity of BOLD signal. (3) The dominant systemic confounding contributions elicited by stimulus-evoked cardiovascular responses observed in mouse fMRI when applying block stimuli may be largely avoided by a milder event-related design applying a randomly spaced single pulse train (RSSPT). Thereby the spatial specificity of the fMRI response is largely retained. We conclude that the sensitivity, specificity and interpretability of stimulus-evoked BOLD signals in mice can be improved by combining appropriate stimulation paradigms with analysis procedures that include adapted HRFs.


Assuntos
Anestésicos/administração & dosagem , Mapeamento Encefálico , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Animais , Estimulação Elétrica , Feminino , Membro Posterior , Isoflurano/administração & dosagem , Medetomidina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Propofol/administração & dosagem , Uretana/farmacologia
4.
Nat Methods ; 9(6): 597-602, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22561989

RESUMO

Functional magnetic resonance imaging (fMRI) based on blood oxygen level-dependent (BOLD) contrast is widely used for probing brain activity, but its relationship to underlying neural activity remains elusive. Here, we combined fMRI with fiber-optic recordings of fluorescent calcium indicator signals to investigate this relationship in rat somatosensory cortex. Electrical forepaw stimulation (1-10 Hz) evoked fast calcium signals of neuronal origin that showed frequency-dependent adaptation. Additionally, slower calcium signals occurred in astrocyte networks, as verified by astrocyte-specific staining and two-photon microscopy. Without apparent glia activation, we could predict BOLD responses well from simultaneously recorded fiber-optic signals, assuming an impulse response function and taking into account neuronal adaptation. In cases with glia activation, we uncovered additional prolonged BOLD signal components. Our findings highlight the complexity of fMRI BOLD signals, involving both neuronal and glial activity. Combined fMRI and fiber-optic recordings should help to clarify cellular mechanisms underlying BOLD signals.


Assuntos
Sinalização do Cálcio/fisiologia , Tecnologia de Fibra Óptica/métodos , Imageamento por Ressonância Magnética/métodos , Neuroglia/fisiologia , Neurônios/fisiologia , Animais , Circulação Cerebrovascular/fisiologia , Estimulação Elétrica , Feminino , Tecnologia de Fibra Óptica/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Neocórtex/fisiologia , Oxigênio/sangue , Ratos , Córtex Somatossensorial/fisiologia
5.
Neuroimage ; 94: 372-384, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24495809

RESUMO

Functional magnetic resonance (fMRI) in mice has become an attractive tool for mechanistic studies, for characterizing models of human disease, and for evaluation of novel therapies. Yet, controlling the physiological state of mice is challenging, but nevertheless important as changes in cardiovascular parameters might affect the hemodynamic readout which constitutes the basics of the fMRI signal. In contrast to rats, fMRI studies in mice report less robust brain activation of rather widespread character to innocuous sensory stimulation. Anesthesia is known to influence the characteristics of the fMRI signal. To evaluate modulatory effects imposed by the anesthesia on stimulus-evoked fMRI responses, we compared blood oxygenation level dependent (BOLD) and cerebral blood volume (CBV) signal changes to electrical hindpaw stimulation using the four commonly used anesthetics isoflurane, medetomidine, propofol and urethane. fMRI measurements were complemented by assessing systemic physiological parameters throughout the experiment. Unilateral stimulation of the hindpaw elicited widespread fMRI responses in the mouse brain displaying a bilateral pattern irrespective of the anesthetic used. Analysis of magnitude and temporal profile of BOLD and CBV signals indicated anesthesia-specific modulation of cerebral hemodynamic responses and differences observed for the four anesthetics could be largely explained by their known effects on animal physiology. Strikingly, independent of the anesthetic used our results reveal that fMRI responses are influenced by stimulus-induced cardiovascular changes, which indicate an arousal response, even to innocuous stimulation. This may mask specific fMRI signal associated to the stimulus. Hence, studying the processing of peripheral input in mice using fMRI techniques constitutes a major challenge and adapted paradigms and/or alternative fMRI readouts should also be considered when studying sensory processing in mice.


Assuntos
Anestésicos Gerais/administração & dosagem , Mapeamento Encefálico/métodos , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Potenciais Somatossensoriais Evocados/fisiologia , Imageamento por Ressonância Magnética/métodos , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/fisiologia , Animais , Relação Dose-Resposta a Droga , Feminino , Isoflurano/administração & dosagem , Medetomidina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Física/métodos , Propofol/administração & dosagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tato , Uretana/administração & dosagem
6.
Brain Topogr ; 25(1): 20-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21644026

RESUMO

We investigated the spontaneous brain electric activity of 13 skeptics and 16 believers in paranormal phenomena; they were university students assessed with a self-report scale about paranormal beliefs. 33-channel EEG recordings during no-task resting were processed as sequences of momentary potential distribution maps. Based on the maps at peak times of Global Field Power, the sequences were parsed into segments of quasi-stable potential distribution, the 'microstates'. The microstates were clustered into four classes of map topographies (A-D). Analysis of the microstate parameters time coverage, occurrence frequency and duration as well as the temporal sequence (syntax) of the microstate classes revealed significant differences: Believers had a higher coverage and occurrence of class B, tended to decreased coverage and occurrence of class C, and showed a predominant sequence of microstate concatenations from A to C to B to A that was reversed in skeptics (A to B to C to A). Microstates of different topographies, putative "atoms of thought", are hypothesized to represent different types of information processing.The study demonstrates that personality differences can be detected in resting EEG microstate parameters and microstate syntax. Microstate analysis yielded no conclusive evidence for the hypothesized relation between paranormal belief and schizophrenia.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Eletroencefalografia , Personalidade , Descanso/fisiologia , Análise de Variância , Feminino , Humanos , Masculino , Probabilidade , Estudantes , Pensamento , Universidades
7.
Neurophotonics ; 9(3): 032206, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35355657

RESUMO

Significance: Multiscale imaging holds particular relevance to neuroscience, where it helps integrate the cellular and molecular biological scale, which is most accessible to interventions, with holistic organ-level evaluations, most relevant with respect to function. Being inextricably interdisciplinary, multiscale imaging benefits substantially from incremental technology adoption, and a detailed overview of the state-of-the-art is vital to an informed application of imaging methods. Aim: In this article, we lay out the background and methodological aspects of multimodal approaches combining functional magnetic resonance imaging (fMRI) with simultaneous optical measurement or stimulation. Approach: We focus on optical techniques as these allow, in conjunction with genetically encoded proteins (e.g. calcium indicators or optical signal transducers), unprecedented read-out and control specificity for individual cell-types during fMRI experiments, while leveraging non-interfering modalities. Results: A variety of different solutions for optical/fMRI methods has been reported ranging from bulk fluorescence recordings via fiber photometry to high resolution microscopy. In particular, the plethora of optogenetic tools has enabled the transformation of stimulus-evoked fMRI into a cell biological interrogation method. We discuss the capabilities and limitations of these genetically encoded molecular tools in the study of brain phenomena of great methodological and neuropsychiatric interest-such as neurovascular coupling (NVC) and neuronal network mapping. We provide a methodological description of this interdisciplinary field of study, and focus in particular on the limitations of the widely used blood oxygen level dependent (BOLD) signal and how multimodal readouts can shed light on the contributions arising from neurons, astrocytes, or the vasculature. Conclusion: We conclude that information from multiple signaling pathways must be incorporated in future forward models of the BOLD response to prevent erroneous conclusions when using fMRI as a surrogate measure for neural activity. Further, we highlight the potential of direct neuronal stimulation via genetically defined brain networks towards advancing neurophysiological understanding and better estimating effective connectivity.

8.
Sci Rep ; 9(1): 10563, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332260

RESUMO

Non-invasive investigation of physiological changes and metabolic events associated with brain activity in mice constitutes a major challenge. Conventionally, fMRI assesses neuronal activity by evaluating activity-evoked local changes in blood oxygenation levels (BOLD). In isoflurane-anaethetized mice, however, we found that BOLD signal changes during paw stimulation appear to be dominated by arousal responses even when using innocuous stimuli. Widespread responses involving both hemispheres have been observed in response to unilateral stimulation. MRS allows probing metabolic changes associated with neuronal activation and provides a complementary readout to BOLD fMRI for investigating brain activity. In this study we evaluated the sensitivity of a free induction decay (FID) based spectroscopic imaging (MRSI) protocol for the measurement of alterations in glutamate levels elicited by unilateral electrical paw stimulation at different current amplitudes. Coronal MRSI maps of glutamate distribution with 17 × 17 voxels of 1 µl volume have been recorded with a temporal resolution of 12 min. Significant region-specific increases in glutamate levels have been observed in the contralateral but not in the ispiateral S1 somatosensory cortex upon stimulation. The amplitude of glutamate changes increased in a dose-dependent manner with the stimulus amplitude. The study demonstrates feasibility of functional MRSI in mice for studying activity-evoked glutamate changes in a temporo-spatially resolved manner.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Análise Espectral/métodos , Animais , Mapeamento Encefálico/métodos , Estimulação Elétrica , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Neuroimagem Funcional/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/sangue , Sistema Nervoso Periférico/fisiologia , Sensibilidade e Especificidade , Córtex Somatossensorial/fisiologia , Análise Espectral/estatística & dados numéricos
9.
Neurophotonics ; 6(2): 025001, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30989087

RESUMO

Multimodal imaging combining optoacoustic tomography (OAT) with magnetic resonance imaging (MRI) enables spatiotemporal resolution complementarity, improves accurate quantification, and thus yields more insights into physiology and pathophysiology. However, only manual landmark based coregistration of OAT-MRI has been used so far. We developed a toolbox (RegOA), which frames an automated registration pipeline to align OAT with high-field MR images based on mutual information. We assessed the performance of the registration method using images acquired on one phantom with fiducial markers and in vivo/ex vivo data of mouse heads/brain. The accuracy and robustness of the registration are improved using a two-step registration method with preprocessing of OAT and MRI data. The major advantages of our approach are minimal user input and quantitative assessment of the registration error. The registration with MR and standard reference atlas enables regional information extraction, facilitating the accurate, objective, and rapid analysis of large groups of rodent OAT and MR images.

10.
Sci Rep ; 9(1): 14815, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616011

RESUMO

Glioblastoma is a malignant brain tumor with mean overall survival of less than 15 months. Blood vessel leakage and peritumoral edema lead to increased intracranial pressure and augment neurological deficits which profoundly decrease the quality of life of glioblastoma patients. It is unknown how the dynamics of cerebrospinal fluid (CSF) turnover are affected during this process. By monitoring the transport of CSF tracers to the systemic blood circulation after infusion into the cisterna magna, we demonstrate that the outflow of CSF is dramatically reduced in glioma-bearing mice. Using a combination of magnetic resonance imaging (MRI) and near-infrared (NIR) imaging, we found that the circulation of CSF tracers was hindered after cisterna magna injection with reduced signals along the exiting cranial nerves and downstream lymph nodes, which represent the major CSF outflow route in mice. Due to blockage of the normal routes of CSF bulk flow within and from the cranial cavity, CSF tracers were redirected into the spinal space. In some mice, impaired CSF clearance from the cranium was compensated by a lymphatic outflow from the sacral spine.


Assuntos
Neoplasias Encefálicas/complicações , Líquido Cefalorraquidiano/fisiologia , Glioblastoma/complicações , Sistema Glinfático/fisiopatologia , Hipertensão Intracraniana/fisiopatologia , Animais , Neoplasias Encefálicas/líquido cefalorraquidiano , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral/transplante , Cisterna Magna/diagnóstico por imagem , Cisterna Magna/fisiopatologia , Modelos Animais de Doenças , Feminino , Glioblastoma/líquido cefalorraquidiano , Glioblastoma/patologia , Glioblastoma/fisiopatologia , Humanos , Hidrodinâmica , Hipertensão Intracraniana/líquido cefalorraquidiano , Hipertensão Intracraniana/etiologia , Imageamento por Ressonância Magnética , Camundongos , Espectroscopia de Luz Próxima ao Infravermelho
11.
Nat Protoc ; 13(5): 840-855, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29599439

RESUMO

Despite the growing popularity of blood oxygen level-dependent (BOLD) functional MRI (fMRI), understanding of its underlying principles is still limited. This protocol describes a technique for simultaneous measurement of neural activity using fluorescent calcium indicators together with the corresponding hemodynamic BOLD fMRI response in the mouse brain. Our early work using small-molecule fluorophores in rats gave encouraging results but was limited to acute measurements using synthetic dyes. Our latest procedure combines fMRI with optical detection of cell-type-specific virally delivered GCaMP6, a genetically encoded calcium indicator (GECI). GCaMP6 fluorescence, which increases upon calcium binding, is collected by a chronically implanted optical fiber, allowing longitudinal studies in mice. The chronic implant, placed horizontally on the skull, has an angulated tip that reflects light into the brain and is connected via fiber optics to a remote optical setup. The technique allows access to the neocortex and does not require adaptations of commercial MRI hardware. The hybrid approach permits fiber-optic calcium recordings with simultaneous artifact-free BOLD fMRI with full brain coverage and 1-s temporal resolution using standard gradient-echo echo-planar imaging (GE-EPI) sequences. The method provides robust, cell-type-specific readouts to link neural activity to BOLD signals, as emonstrated for task-free ('resting-state') conditions and in response to hind-paw stimulation. These results highlight the power of fiber photometry combined with fMRI, which we aim to further advance in this protocol. The approach can be easily adapted to study other molecular processes using suitable fluorescent indicators.


Assuntos
Encéfalo/fisiologia , Sinalização do Cálcio , Tecnologia de Fibra Óptica/métodos , Proteínas Luminescentes/análise , Imageamento por Ressonância Magnética/métodos , Neurônios/fisiologia , Oxigênio/metabolismo , Animais , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador , Camundongos
12.
J Cereb Blood Flow Metab ; 37(7): 2368-2382, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27596833

RESUMO

Previously, we reported widespread bilateral increases in stimulus-evoked functional magnetic resonance imaging signals in mouse brain to unilateral sensory paw stimulation. We attributed the pattern to arousal-related cardiovascular changes overruling cerebral autoregulation thereby masking specific signal changes elicited by local neuronal activity. To rule out the possibility that interhemispheric neuronal communication might contribute to bilateral functional magnetic resonance imaging responses, we compared stimulus-evoked functional magnetic resonance imaging responses to unilateral hindpaw stimulation in acallosal I/LnJ, C57BL/6, and BALB/c mice. We found bilateral blood-oxygenation-level dependent signal changes in all three strains, ruling out a dominant contribution of transcallosal communication as reason for bilaterality. Analysis of functional connectivity derived from resting-state functional magnetic resonance imaging, revealed that bilateral cortical functional connectivity is largely abolished in I/LnJ animals. Cortical functional connectivity in all strains correlated with structural connectivity in corpus callosum as revealed by diffusion tensor imaging. Given the profound influence of systemic hemodynamics on stimulus-evoked functional magnetic resonance imaging outcomes, we evaluated whether functional connectivity data might be affected by cerebrovascular parameters, i.e. baseline cerebral blood volume, vascular reactivity, and reserve. We found that effects of cerebral hemodynamics on functional connectivity are largely outweighed by dominating contributions of structural connectivity. In contrast, contributions of transcallosal interhemispheric communication to the occurrence of ipsilateral functional magnetic resonance imaging response of equal amplitude to unilateral stimuli seem negligible.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Circulação Cerebrovascular/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Extremidade Inferior/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Animais , Estimulação Elétrica , Feminino , Frequência Cardíaca/fisiologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reflexo/fisiologia
13.
Psychopharmacology (Berl) ; 234(13): 2019-2030, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28382543

RESUMO

RATIONALE: The dopamine D2 receptor (D2R) couples to inhibitory Gi/o proteins and is targeted by antipsychotic and antiparkinsonian drugs. Beta-arrestin2 binds to the intracellular regions of the agonist-occupied D2R to terminate G protein activation and promote internalization, but also to initiate downstream signaling cascades which have been implicated in psychosis. Functional magnetic resonance imaging (fMRI) has proven valuable for measuring dopamine receptor-mediated changes in neuronal activity, and might enable beta-arrestin2 function to be studied in vivo. OBJECTIVES: The present study examined fMRI blood oxygenation level dependent (BOLD) signal changes elicited by a dopamine agonist in wild-type (WT) and beta-arrestin2 knockout (KO) mice, to investigate whether genetic deletion of beta-arrestin2 prolongs or otherwise modifies D2R-dependent responses. METHODS: fMRI BOLD data were acquired on a 9.4 T system. During scans, animals received 0.2 mg/kg apomorphine, i.v. In a subset of experiments, animals were pretreated with 2 mg/kg of the D2R antagonist, eticlopride. RESULTS: Following apomorphine administration, BOLD signal decreases were observed in caudate/putamen of WT and KO animals. The time course of response decay in caudate/putamen was significantly slower in KO vs. WT animals. In cingulate cortex, an initial BOLD signal decrease was followed by a positive response component in WT but not in KO animals. Eticlopride pretreatment significantly reduced apomorphine-induced BOLD signal changes. CONCLUSIONS: The prolonged striatal response decay rates in KO animals might reflect impaired D2R desensitization, consistent with the known function of beta-arrestin2. Furthermore, the apomorphine-induced positive response component in cingulate cortex may depend on beta-arrestin2 signaling downstream of D2R.


Assuntos
Antiparkinsonianos/farmacologia , Antipsicóticos/farmacologia , Apomorfina/administração & dosagem , Corpo Estriado/metabolismo , Neostriado/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta-Arrestina 2 , Animais , Antiparkinsonianos/metabolismo , Antipsicóticos/metabolismo , Apomorfina/química , Agonistas de Dopamina/farmacologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Receptores de Dopamina D2/química , Receptores de Dopamina D2/fisiologia
14.
Front Aging Neurosci ; 7: 241, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26834622

RESUMO

Alterations in density and morphology of the cerebral microvasculature have been reported to occur in Alzheimer's disease patients and animal models of the disease. In this study we compared magnetic resonance imaging (MRI) techniques for their utility to detect age-dependent changes of the cerebral vasculature in the arcAß mouse model of cerebral amyloidosis. Dynamic susceptibility contrast (DSC)-MRI was performed by tracking the passage of a superparamagnetic iron oxide nanoparticle in the brain with dynamic gradient echo planar imaging (EPI). From this measurements relative cerebral blood volume [rCBV(DSC)] and relative cerebral blood flow (rCBF) were estimated. For the same animal maps of the relaxation shift index Q were computed from high resolution gradient echo and spin echo data that were acquired before and after superparamagnetic iron oxide (SPIO) nanoparticle injection. Q-values were used to derive estimates of microvessel density. The change in the relaxation rates [Formula: see text] obtained from pre- and post-contrast gradient echo data was used for the alternative determination of rCBV [rCBV([Formula: see text])]. Linear mixed effects modeling found no significant association between rCBV(DSC), rCBV([Formula: see text]), rCBF, and Q with genotype in 13-month old mice [compared to age-matched non-transgenic littermates (NTLs)] for any of the evaluated brain regions. In 24-month old mice there was a significant association for rCBV(DSC) with genotype in the cerebral cortex, and for rCBV([Formula: see text]) in the cerebral cortex and cerebellum. For rCBF there was a significant association in the cerebellum but not in other brain regions. Q-values in the olfactory bulb, cerebral cortex, striatum, hippocampus, and cerebellum in 24-month old mice were significantly associated with genotype. In those regions Q-values were reduced between 11 and 26% in arcAß mice compared to age-matched NTLs. Vessel staining with CD31 immunohistochemistry confirmed a reduction of microvessel density in the old arcAß mice. We further demonstrated a region-specific association between parenchymal and vascular deposition of ß-amyloid and decreased vascular density, without a correlation with the amount of Aß deposition. We found that Q mapping was more suitable than the hemodynamic read-outs to detect amyloid-related degeneration of the cerebral microvasculature.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa