Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 24(4): 1007-18, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25296915

RESUMO

In humans, lack of phenylalanine hydroxylase (Pah) activity results in phenylketonuria (PKU), which is associated with the development of severe mental retardation after birth. The underlying mechanisms, however, are poorly understood. Mutations of the Pah gene in Pah(enu2)/c57bl6 mice result in elevated levels of phenylalanine in serum similar to those in humans suffering from PKU. In our study, long-term potentiation (LTP) and paired-pulse facilitation, measured at CA3-CA1 Schaffer collateral synapses, were impaired in acute hippocampal slices of Pah(enu2)/c57bl6 mice. In addition, we found reduced expression of presynaptic proteins, such as synaptophysin and the synaptosomal-associated protein 25 (SNAP-25), and enhanced expression of postsynaptic marker proteins, such as synaptopodin and spinophilin. Stereological counting of spine synapses at the ultrastructural level revealed higher synaptic density in the hippocampus, commencing at 3 weeks and persisting up to 12 weeks after birth. Consistent effects were seen in response to phenylalanine treatment in cultures of dissociated hippocampal neurones. Most importantly, in the hippocampus of Pah(enu2)/c57bl6 mice, we found a significant reduction in microglia activity. Reorganization of hippocampal circuitry after birth, namely synaptic pruning, relies on elimination of weak synapses by activated microglia in response to neuronal activity. Hence, our data strongly suggest that reduced microglial activity in response to impaired synaptic transmission affects physiological postnatal remodelling of synapses in the hippocampus and may trigger the development of mental retardation in PKU patients after birth.


Assuntos
Hipocampo/metabolismo , Fenilcetonúrias/metabolismo , Transmissão Sináptica , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Humanos , Potenciação de Longa Duração , Camundongos , Camundongos Knockout , Microglia/metabolismo , Neurônios/metabolismo , Fenilalanina/farmacologia , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Sinapses/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo
2.
Exp Neurol ; 281: 28-36, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27091224

RESUMO

High phenylalanine concentrations in the brain due to dysfunctional phenylalanine hydroxylase (Pah) are considered to account for mental retardation in phenylketonuria (PKU). In this study, we treated hippocampal cultures with the amino acid in order to determine the role of elevated levels of phenylalanine in PKU-related mental retardation. Synapse density and dendritic length were dramatically reduced in hippocampal cultures treated with phenylalanine. Changes in cofilin expression and phosphorylation status, which were restored by NMDA, as well as reduced activation of the small GTPase Rac1, likely underlie these structural alterations. In the Pah(enu2) mouse, which carries a mutated Pah gene, we previously found higher synaptic density due to delayed synaptic pruning in response to insufficient microglia function. Microglia activity and C3 complement expression, both of which were reduced in the Pah(enu2) mouse, however, were unaffected in hippocampal cultures treated with phenylalanine. The lack of a direct effect of phenylalanine on microglia is the key to the opposite effects regarding synapse stability in vitro and in the Pah(enu2) mouse. Judging from our data, it appears that another player is required for the inactivation of microglia in the Pah(enu2) mouse, rather than high concentrations of phenylalanine alone. Altogether, the data underscore the necessity of a lifelong phenylalanine-restricted diet.


Assuntos
Fenilalanina/metabolismo , Fenilcetonúrias , Animais , Células Cultivadas , Cofilina 1/metabolismo , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Modelos Animais de Doenças , Embrião de Mamíferos , Córtex Entorrinal/patologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/patologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/ultraestrutura , Mutação/genética , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Fenilalanina/farmacologia , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/metabolismo , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Sinapses/efeitos dos fármacos , Sinapses/patologia , Sinapses/ultraestrutura , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa