Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 621(7977): 56-59, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37364766

RESUMO

Forty years ago, it was proposed that gas-phase organic chemistry in the interstellar medium can be initiated by the methyl cation CH3+ (refs. 1-3), but so far it has not been observed outside the Solar System4,5. Alternative routes involving processes on grain surfaces have been invoked6,7. Here we report James Webb Space Telescope observations of CH3+ in a protoplanetary disk in the Orion star-forming region. We find that gas-phase organic chemistry is activated by ultraviolet irradiation.

2.
Phys Chem Chem Phys ; 26(3): 2692-2703, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175663

RESUMO

Infrared messenger-tagging predissociation action spectroscopy (IRPD) is a well-established technique to record vibrational spectra of reactive molecular ions. One of its major drawbacks is that the spectrum of the messenger-ion complex is taken instead of that of the bare ion. In particular for small open-shell species, such as the Renner-Teller (RT) affected HCCH+ and DCCD+, the attachment of the tag may have a significant impact on the spectral features. Here we present the application of the novel leak-out spectroscopy (LOS) as a tag-free method to record the cis-bending of the HCCH+ (∼700 cm-1) and DCCD+ cations (∼520 cm-1), using a cryogenic ion trap end user station at the FELIX laboratory. We demonstrate that the obtained LOS spectrum is equivalent to a previously recorded laser-induced reactions (LIR) spectrum of HCCH+. The bending modes are the energetically lowest-lying vibrational modes targeted with LOS so far, showing its potential as a universal broadband spectroscopic technique. Furthermore, we have investigated the effect of the rare gas attachment by recording the vibrational spectra of Ne- and Ar-tagged HCCH+. We found that the Ne-attachment led to a shift in band positions and change in relative intensities, while the Ar-attachment even led to a complete quenching of the RT splitting, showing the importance of using a tag-free method for RT affected systems. The results are interpreted with the help of high-level ab initio calculations in combination with an effective Hamiltonian approach.

3.
J Phys Chem A ; 128(24): 4859-4866, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38857201

RESUMO

Ethyl phosphaethyne, C2H5CP, has been characterized spectroscopically in the gas phase for the first time, employing millimeter- and submillimeter-wave spectroscopy in the frequency regime from 75 to 760 GHz. Spectroscopic detection and analysis was guided by high-level quantum-chemical calculations of molecular structures and force fields performed at the coupled-cluster singles and doubles level extended by a perturbative correction for the contribution from triple excitations, CCSD(T), in combination with large basis sets. Besides the parent isotopologue, the three singly substituted 13C species were observed in natural abundance up to frequencies as high as 500 GHz. Despite the comparably low astronomical abundance of phosphorus, phosphaalkynes, R-CP, such as C2H5CP are promising candidates for future radio astronomical detection.

4.
J Chem Phys ; 160(7)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38364002

RESUMO

The rotational spectrum of the molecular ion HCNH+ is revisited using double-resonance spectroscopy in an ion trap apparatus, with six transitions measured between 74 and 445 GHz. Due to the cryogenic temperature of the trap, the hyperfine splittings caused by the 14N quadrupolar nucleus were resolved for transitions up to J = 4 ← 3, allowing for a refinement of the spectroscopic parameters previously reported, especially the quadrupole coupling constant eQq.

5.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338409

RESUMO

Two fundamental halocarbon ions, CH2Cl+ and CH3ClH+, were studied in the gas phase using the FELion 22-pole ion trap apparatus and the Free Electron Laser for Infrared eXperiments (FELIX) at Radboud University, Nijmegen (the Netherlands). The vibrational bands of a total of four isotopologs, CH235,37Cl+ and CH335,37ClH+, were observed in selected wavenumber regions between 500 and 2900 cm-1 and then spectroscopically assigned based on the results of anharmonic force field calculations performed at the CCSD(T) level of theory. As the infrared photodissociation spectroscopy scheme employed probes singly Ne-tagged weakly bound complexes, complementary quantum-chemical calculations of selected species were also performed. The impact of tagging on the vibrational spectra of CH2Cl+ and CH3ClH+ is found to be virtually negligible for most bands; for CH3ClH+-Ne, the observations suggest a proton-bound structural arrangement. The experimental band positions as well as the best estimate rotational molecular parameters given in this work provide a solid basis for future spectroscopic studies at high spectral resolutions.

6.
Faraday Discuss ; 245(0): 298-308, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37313855

RESUMO

Applying a novel action spectroscopic technique in a 4 K cryogenic ion-trap instrument, the molecule c-C3H2D+ has been investigated by high-resolution rovibrational and pure rotational spectroscopy for the first time. In total, 126 rovibrational transitions within the fundamental band of the ν1 symmetric C-H stretch were measured with a band origin centred at 3168.565 cm-1, which were used to predict pure rotational transition frequencies in the ground vibrational state. Based on these predictions, 16 rotational transitions were observed between 90 and 230 GHz by using a double-resonance scheme. These new measurements will enable the first radio-astronomical search for c-C3H2D+.

7.
Phys Chem Chem Phys ; 25(29): 19740-19749, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37439091

RESUMO

The ro-vibrational and pure rotational spectra of the linear ion HC3O+ have been investigated in a 4 K cryogenic ion trap instrument. For this, a novel action spectroscopic technique, called leak-out-spectroscopy (LOS, Schmid et al., J. Phys. Chem. A 2022, 126, 8111), has been utilized and characterized. In total, 45 ro-vibrational transitions within the fundamental band of the ν1 C-H stretching mode were measured with a band center at 3237.132 cm-1, as well as 34 lines from the combination band ν2 + ν4, and 41 lines tentatively identified as the combination band ν2 + ν5 + ν7, interleaved and resonant with ν1. Surprisingly, also two hot bands were detected despite the cryogenic operation temperature. Based on the novel action spectroscopy approach, a new double-resonance rotational measurement scheme was established, consisting of rotational excitation followed by vibrational excitation. Seven rotational transitions were observed between 89 and 180 GHz. Highly accurate spectroscopic parameters were extracted from a fit using all available data. In addition, a pulsed laser system has been employed to record a low resolution vibrational spectrum, in order to demonstrate the compatibility of such lasers with the LOS method.

8.
Angew Chem Int Ed Engl ; 62(41): e202306744, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37561837

RESUMO

Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex HHe 3 + ${{\rm{HHe}}_3^ + }$ . The equilibrium structure of HHe 3 + ${{\rm{HHe}}_3^ + }$ is planar and T-shaped, one He atom solvating the quasi-linear He-H+ -He core. The dynamical structure of HHe 3 + ${{\rm{HHe}}_3^ + }$ , in all of its bound states, is fundamentally different. As revealed by spatial distribution functions and nuclear densities, during the vibrations of the molecule the solvating He is not restricted to be in the plane defined by the instantaneously bent HHe 2 + ${{\rm{HHe}}_2^ + }$ chomophore, but freely orbits the central proton, forming a three-dimensional torus around the HHe 2 + ${{\rm{HHe}}_2^ + }$ chromophore. This quantum delocalization is observed for all vibrational states, the type of vibrational excitation being reflected in the topology of the nodal surfaces in the nuclear densities, showing, for example, that intramolecular bending involves excitation along the circumference of the torus.

9.
Phys Chem Chem Phys ; 24(44): 27343-27354, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36326610

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are thought to be a major constituent of astrophysical environments, being the carriers of the ubiquitous aromatic infrared bands (AIBs) observed in the spectra of galactic and extra-galactic sources that are irradiated by ultraviolet (UV) photons. Small (2-cycles) PAHs were unambiguously detected in the TMC-1 dark cloud, showing that PAH growth pathways exist even at low temperatures. The processing of PAHs by UV photons also leads to their fragmentation, which has been recognized in recent years as an alternative route to the generally accepted bottom-up chemical pathways for the formation of complex hydrocarbons in UV-rich interstellar regions. Here we consider the C12H8+ ion that is formed in our experiments from the dissociative ionization of the anthracene and phenanthrene (C14H10) molecules. By employing the sensitive action spectroscopic scheme of infrared pre-dissociation (IRPD) in a cryogenic ion trap instrument coupled to the free-electron lasers at the FELIX Laboratory, we have recorded the broadband and narrow line-width gas-phase IR spectra of the fragment ions (C12H8+) and also the reference spectra of three low energy isomers of C12H8+. By comparing the experimental spectra to those obtained from quantum chemical calculations we have identified the dominant structure of the fragment ion formed in the dissociation process to be the acenaphthylene cation for both isomeric precursors. Ab initio molecular dynamics simulations are presented to elucidate the fragmentation process. This result reinforces the dominant role of species containing a pentagonal ring in the photochemistry of small PAHs.

10.
J Phys Chem A ; 126(43): 8111-8117, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36278898

RESUMO

A novel method of spectroscopy in ion traps termed leak-out spectroscopy (LOS) is presented. Here, mass-selected, cold ions are excited by an infrared laser. In a subsequent collision with a neutral buffer gas particle, their internal energy is then transferred to kinetic energy. As a result, these ions leak out from the ion trap and are detected. The LOS scheme is generally applicable, very sensitive, and close to background-free when operated at low temperature. The potential of this method is demonstrated and characterized here for the first time by recording the rotationally resolved spectrum of the C-H stretching vibration ν1 of linear C3H+. Besides performing high-resolution spectroscopy, this method opens up the way for analyzing the composition of trap content, for example, determining isomer ratios, by selectively expelling isomers or other isobaric ions from the trap. Likewise, LOS can be used to prepare clean samples of structural and nuclear spin isomers.

11.
J Chem Phys ; 156(14): 144307, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35428397

RESUMO

With a He-H3 + interaction potential obtained from advanced electronic structure calculations, we computed the vibration-rotation-tunneling (VRT) states of this complex for total angular momenta J from 0 to 9, both for the vibrational ground state and for the twofold degenerate v2 = 1 excited state of H3 +. The potential has three equivalent global minima with depth De = 455.3 cm-1 for He in the plane of H3 +, three equatorial saddle points that separate these minima with barriers of 159.5 cm-1, and two axial saddle points with energies of 243.1 cm-1 above the minima. The dissociation energies calculated for the complexes of He with ortho-H3 + (oH3 +) and para-H3 + (pH3 +) are D0 = 234.5 and 236.3 cm-1, respectively. Wave function plots of the VRT states show that they may be characterized as weakly hindered internal rotor states, delocalized over the three minima in the potential and with considerable amplitude at the barriers. Most of them are dominated by the jk = 10 and 11 rotational ground states of oH3 + and pH3 +, with the intermolecular stretching mode excited up to v = 4 inclusive. However, we also found excited internal rotor states: 33 in He-oH3 +, and 22 and 21 in He-pH3 +. The VRT levels and wave functions were used to calculate the frequencies and line strengths of all allowed v2 = 0 → 1 rovibrational transitions in the complex. Theoretical spectra generated with these results are compared with the experimental spectra in Paper II [Salomon et al., J. Chem. Phys. 156, 144308 (2022)] and are extremely helpful in assigning these spectra. This comparison shows that the theoretical energy levels and spectra agree very well with the measured ones, which confirms the high accuracy of our ab initio He-H3 + interaction potential and of the ensuing calculations of the VRT states.

12.
J Chem Phys ; 156(14): 144308, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35428379

RESUMO

The rotationally resolved infrared (IR) spectrum of the He-H3 + complex has been measured in a cryogenic ion trap experiment at a nominal temperature of 4 K. Predissociation of the stored complex has been invoked by excitation of the degenerate ν2 mode of the H3 + sub-unit using a pulsed optical parametric oscillator system. An assignment of the experimental spectrum became possible through one-to-one correlations with bands of the spectrum theoretically predicted in Paper I [Harding et al., J. Chem. Phys. 156, 144307 (2022)]. 19 bands have been assigned and analyzed, and the energy term diagram of the lower states of this floppy molecular complex has been derived from combination differences (CDs) in the experimental spectrum. Ground state combination differences (GSCDs) reveal a large part of the energy term diagram for the He-H3 + complex in its vibrational ground state, v = 0. Experimental and theoretical term energies agree within experimental accuracy for the rotational fine structure associated with the total angular momentum quantum number J and the parity e/f as well as for the coarse spacing of the lowest K states of the complex. This favorable comparison shows that the potential energy surface (PES) calculated in Paper I is accurate. The barriers between the three equivalent global minima in this PES are relatively low and the He-H3 + complex is extremely floppy, with nearly unhindered internal rotation of the H3 + sub-unit. The resulting Coriolis interactions couple the internal and end-over-end rotation of the complex and contribute significantly to the energy terms. They are observed both in experiment and theory and are, e.g., the origin of different rotational constants for states of e and f parity. Also in this respect, experiment and theory agree very well. Despite the assignment and analysis of many bands of the extremely rich IR spectrum of He-H3 +, higher levels of excitation, including the complex stretching mode, need further attention.

13.
Phys Chem Chem Phys ; 23(47): 26602-26622, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34817492

RESUMO

Rotational action spectroscopy is an experimental method in which rotational spectra of molecules, typically in the microwave to sub-mm-wave domain of the electromagnetic spectrum (∼1-1000 GHz), are recorded by action spectroscopy. Action spectroscopy means that the spectrum is recorded not by detecting the absorption of light by the molecules, but by the action of the light on the molecules, e.g., photon-induced dissociation of a chemical bond, a photon-triggered reaction, or photodetachment of an electron. Typically, such experiments are performed on molecular ions, which can be well controlled and mass-selected by guiding and storage techniques. Though coming with many advantages, the application of action schemes to rotational spectroscopy was hampered for a long time by the small energy content of a corresponding photon. Therefore, the first rotational action spectroscopic methods emerged only about one decade ago. Today, there exists a toolbox full of different rotational action spectroscopic schemes which are summarized in this review.

14.
J Chem Phys ; 155(22): 224302, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34911311

RESUMO

In the rotational spectroscopy community, several popular codes are available to treat multiple internal rotors in a molecule. In terms of the pros and cons of each code, it is often a difficult task to decide which program to apply to a specific internal rotation problem. We faced this issue when dealing with the spectroscopic fingerprint of 4-methylacetophenone (4MAP), recently investigated in the microwave region, which we here extended into the millimeterwave region. The methyl group attached to the phenyl ring in 4MAP undergoes internal rotation with a very low barrier of only 22 cm-1. The acetyl methyl group features a much higher barrier of about 580 cm-1. The performances of a program using the so-called "local" approach in terms of Herschbach's perturbative treatment, SPFIT, as well as three programs XIAM, ERHAM, and ntop, representing "global" fits, were tested. The results aim at helping spectroscopists in the decision on how to tackle their own internal rotation problems.

15.
J Chem Phys ; 155(24): 241101, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34972371

RESUMO

The predissociation spectrum of the Cl-35(H2) complex is measured between 450 and 800 cm-1 in a multipole radiofrequency ion trap at different temperatures using the FELIX infrared free electron laser. Above a certain temperature, the removal of the Cl-(p-H2) para nuclear spin isomer by ligand exchange to the Cl-(o-H2) ortho isomer is suppressed effectively, thereby making it possible to detect the spectrum of this more weakly bound complex. At trap temperatures of 30.5 and 41.5 K, we detect two vibrational bands of Cl-(p-H2) at 510(1) and 606(1) cm-1. Using accurate quantum calculations, these bands are assigned to transitions to the inter-monomer vibrational modes (v1,v2 l2 ) = (0, 20) and (1, 20), respectively.

16.
Phys Rev Lett ; 124(23): 233401, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603166

RESUMO

Experiments within a cryogenic 22-pole ion trap have revealed an interesting reaction dynamic phenomenon, where rovibrational excitation of an ionic molecule slows down a reaction with a neutral partner. This is demonstrated for the low-temperature hydrogen abstraction reaction c-C_{3}H_{2}^{+}+H_{2}, where excitation of the ion into the ν_{7} antisymmetric C-H stretching mode decreased the reaction rate coefficient toward the products c-C_{3}H_{3}^{+}+H. Supported by high-level quantum-chemical calculations, this observation is explained by the reaction proceeding through a c-C_{3}H_{2}^{+}-H_{2} collision complex in the entrance channel, in which the hydrogen molecule is loosely bound to the hydrogen atom of the c-C_{3}H_{2}^{+} ion. This discovery enables high-resolution vibrational action spectroscopy for c-C_{3}H_{2}^{+} and other molecular ions with similar reaction pathways. Moreover, a detailed kinetic model relating the extent of the observed product depletion signal to the rate coefficients of inelastic collisions reveals that rotational relaxation of the vibrationally excited ions is significantly faster than the rovibrational relaxation, allowing for a large fraction of the ions to be vibrationally excited. This result provides fundamental insight into the mechanism for an important class of chemical reactions, and is capable of probing the inelastic collisional dynamics of molecular ions.

17.
Chemphyschem ; 21(13): 1429-1435, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32394630

RESUMO

In order to study collisions between ions and neutrals, a new Guided Ion Beam (GIB) apparatus, called NOVion, has been assembled and tested. The primary purpose of this instrument is to measure absolute cross sections at energies relevant for technical or inter- and circumstellar plasmas. New and improved results are presented for forming H3 + in collisions of H2 + with H2 . Between 0.1 eV and 2 eV, our measured effective cross sections are in good overall agreement with most previous measurements. However, at higher energies, our results do not show the steep decline, recommended in the standard literature. After critical evaluation of all experimental and theoretical data, a new analytical function is proposed, describing properly the dependence of the title reaction on the collision energy up to 10 eV.

18.
Phys Chem Chem Phys ; 22(40): 22885-22888, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33034329

RESUMO

Using two different action spectroscopic techniques, a high-resolution quantum cascade laser operating around 1300 cm-1 and a cryogenic ion trap machine, the proton shuttle motion of the cations HHe2+ and HHe3+ has been probed at a nominal temperature of 4 K. For HHe3+, the loosely bound character of this complex allowed predissociation spectroscopy to be used, and the observed broad features point to a lifetime of a few ps in the vibrationally excited state. For He-H+-He, a fundamental linear molecule consisting of only three nuclei and four electrons, the method of laser-induced inhibition of complex growth (LIICG) enabled the measurement of three accurate rovibrational transitions, pinning down its molecular parameters for the first time.

19.
Nature ; 516(7530): 219-21, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25409140

RESUMO

The age of dense interstellar cloud cores, where stars and planets form, is a crucial parameter in star formation and difficult to measure. Some models predict rapid collapse, whereas others predict timescales of more than one million years (ref. 3). One possible approach to determining the age is through chemical changes as cloud contraction occurs, in particular through indirect measurements of the ratio of the two spin isomers (ortho/para) of molecular hydrogen, H2, which decreases monotonically with age. This has been done for the dense cloud core L183, for which the deuterium fractionation of diazenylium (N2H(+)) was used as a chemical clock to infer that the core has contracted rapidly (on a timescale of less than 700,000 years). Among astronomically observable molecules, the spin isomers of the deuterated trihydrogen cation, ortho-H2D(+) and para-H2D(+), have the most direct chemical connections to H2 (refs 8, 9, 10, 11, 12) and their abundance ratio provides a chemical clock that is sensitive to greater cloud core ages. So far this ratio has not been determined because para-H2D(+) is very difficult to observe. The detection of its rotational ground-state line has only now become possible thanks to accurate measurements of its transition frequency in the laboratory, and recent progress in instrumentation technology. Here we report observations of ortho- and para-H2D(+) emission and absorption, respectively, from the dense cloud core hosting IRAS 16293-2422 A/B, a group of nascent solar-type stars (with ages of less than 100,000 years). Using the ortho/para ratio in conjunction with chemical models, we find that the dense core has been chemically processed for at least one million years. The apparent discrepancy with the earlier N2H(+) work arises because that chemical clock turns off sooner than the H2D(+) clock, but both results imply that star-forming dense cores have ages of about one million years, rather than 100,000 years.

20.
J Chem Phys ; 152(23): 234304, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32571071

RESUMO

We present a five-dimensional intermolecular potential energy surface (PES) of the NH3-N2 complex, bound state calculations, and new microwave (MW) measurements that provide information on the structure of this complex and a critical test of the potential. Ab initio calculations were carried out using the explicitly correlated coupled cluster [CCSD(T)-F12a] approach with the augmented correlation-consistent aug-cc-pVTZ basis set. The global minimum of the PES corresponds to a configuration in which the angle between the NH3 symmetry axis and the intermolecular axis is 58.7° with the N atom of the NH3 unit closest to the N2 unit, which is nearly parallel to the NH3 symmetry axis. The intermolecular distance is 7.01 a0, and the binding energy De is 250.6 cm-1. The bound rovibrational levels of the four nuclear spin isomers of the complex, which are formed when ortho/para (o/p)-NH3 combines with (o/p)-N2, were calculated on this intermolecular potential surface. The computed dissociation energies D0 are 144.91 cm-1, 146.50 cm-1, 152.29 cm-1, and 154.64 cm-1 for (o)-NH3-(o)-N2, (o)-NH3-(p)-N2, (p)-NH3-(o)-N2, and (p)-NH3-(p)-N2, respectively. Guided by these calculations, the pure rotational transitions of the NH3-N2 van der Waals complex were observed in the frequency range of 13-27 GHz using the chirped-pulse Fourier-transform MW technique. A complicated hyperfine structure due to three quadrupole 14N nuclei was partly resolved and examined for all four nuclear spin isomers of the complex. Newly obtained data definitively established the K values (the projection of the angular momentum J on the intermolecular axis) for the lowest states of the different NH3-N2 nuclear spin isomers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa