Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 40(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39067017

RESUMO

MOTIVATION: Software is vital for the advancement of biology and medicine. Impact evaluations of scientific software have primarily emphasized traditional citation metrics of associated papers, despite these metrics inadequately capturing the dynamic picture of impact and despite challenges with improper citation. RESULTS: To understand how software developers evaluate their tools, we conducted a survey of participants in the Informatics Technology for Cancer Research (ITCR) program funded by the National Cancer Institute (NCI). We found that although developers realize the value of more extensive metric collection, they find a lack of funding and time hindering. We also investigated software among this community for how often infrastructure that supports more nontraditional metrics were implemented and how this impacted rates of papers describing usage of the software. We found that infrastructure such as social media presence, more in-depth documentation, the presence of software health metrics, and clear information on how to contact developers seemed to be associated with increased mention rates. Analysing more diverse metrics can enable developers to better understand user engagement, justify continued funding, identify novel use cases, pinpoint improvement areas, and ultimately amplify their software's impact. Challenges are associated, including distorted or misleading metrics, as well as ethical and security concerns. More attention to nuances involved in capturing impact across the spectrum of biomedical software is needed. For funders and developers, we outline guidance based on experience from our community. By considering how we evaluate software, we can empower developers to create tools that more effectively accelerate biological and medical research progress. AVAILABILITY AND IMPLEMENTATION: More information about the analysis, as well as access to data and code is available at https://github.com/fhdsl/ITCR_Metrics_manuscript_website.


Assuntos
Pesquisa Biomédica , Software , Pesquisa Biomédica/métodos , Humanos , Estados Unidos , Biologia Computacional/métodos
2.
mSphere ; 9(2): e0035423, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38251877

RESUMO

Considering it is common to find as much as 100-fold variation in the number of 16S rRNA gene sequences across samples in a study, researchers need to control for the effect of uneven sequencing effort. How to do this has become a contentious question. Some have argued that rarefying or rarefaction is "inadmissible" because it omits valid data. A number of alternative approaches have been developed to normalize and rescale the data that purport to be invariant to the number of observations. I generated community distributions based on 12 published data sets where I was able to assess the ability of multiple methods to control for uneven sequencing effort. Rarefaction was the only method that could control for variation in uneven sequencing effort when measuring commonly used alpha and beta diversity metrics. Next, I compared the false detection rate and power to detect true differences between simulated communities with a known effect size using various alpha and beta diversity metrics. Although all methods of controlling for uneven sequencing effort had an acceptable false detection rate when samples were randomly assigned to two treatment groups, rarefaction was consistently able to control for differences in sequencing effort when sequencing depth was confounded with treatment group. Finally, the statistical power to detect differences in alpha and beta diversity metrics was consistently the highest when using rarefaction. These simulations underscore the importance of using rarefaction to normalize the number of sequences across samples in amplicon sequencing analyses. IMPORTANCE: Sequencing 16S rRNA gene fragments has become a fundamental tool for understanding the diversity of microbial communities and the factors that affect their diversity. Due to technical challenges, it is common to observe wide variation in the number of sequences that are collected from different samples within the same study. However, the diversity metrics used by microbial ecologists are sensitive to differences in sequencing effort. Therefore, tools are needed to control for the uneven levels of sequencing. This simulation-based analysis shows that despite a longstanding controversy, rarefaction is the most robust approach to control for uneven sequencing effort. The controversy started because of confusion over the definition of rarefaction and violation of assumptions that are made by methods that have been borrowed from other fields. Microbial ecologists should use rarefaction.


Assuntos
Microbiota , RNA Ribossômico 16S/genética , Microbiota/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa