Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Genomics ; 25(1): 433, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693476

RESUMO

BACKGROUND: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. RESULTS: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. CONCLUSIONS: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.


Assuntos
Vírus da Dengue , Genoma Viral , Sorogrupo , Sequenciamento Completo do Genoma , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/classificação , Sequenciamento Completo do Genoma/métodos , Humanos , Genótipo , Dengue/virologia , Dengue/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Viral/genética
2.
Emerg Infect Dis ; 30(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526187

RESUMO

In 2022, concurrent outbreaks of hepatitis A, invasive meningococcal disease (IMD), and mpox were identified in Florida, USA, primarily among men who have sex with men. The hepatitis A outbreak (153 cases) was associated with hepatitis A virus genotype IA. The IMD outbreak (44 cases) was associated with Neisseria meningitidis serogroup C, sequence type 11, clonal complex 11. The mpox outbreak in Florida (2,845 cases) was part of a global epidemic. The hepatitis A and IMD outbreaks were concentrated in Central Florida and peaked during March--June, whereas mpox cases were more heavily concentrated in South Florida and had peak incidence in August. HIV infection was more common (52%) among mpox cases than among hepatitis A (21%) or IMD (34%) cases. Where feasible, vaccination against hepatitis A, meningococcal disease, and mpox should be encouraged among at-risk groups and offered along with program services that target those groups.


Assuntos
Infecções por HIV , Hepatite A , Infecções Meningocócicas , Mpox , Minorias Sexuais e de Gênero , Masculino , Humanos , Hepatite A/epidemiologia , Florida/epidemiologia , Homossexualidade Masculina , Surtos de Doenças , Infecções Meningocócicas/epidemiologia
3.
Emerg Infect Dis ; 27(7): 1902-1908, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34152946

RESUMO

The spread of drug resistance to antimalarial treatments poses a serious public health risk globally. To combat this risk, molecular surveillance of drug resistance is imperative. We report the prevalence of mutations in the Plasmodium falciparum kelch 13 propeller domain associated with partial artemisinin resistance, which we determined by using Sanger sequencing samples from patients enrolled in therapeutic efficacy studies from 9 sub-Saharan countries during 2014-2018. Of the 2,865 samples successfully sequenced before treatment (day of enrollment) and on the day of treatment failure, 29 (1.0%) samples contained 11 unique nonsynonymous mutations and 83 (2.9%) samples contained 27 unique synonymous mutations. Two samples from Kenya contained the S522C mutation, which has been associated with delayed parasite clearance; however, no samples contained validated or candidate artemisinin-resistance mutations.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/uso terapêutico , Resistência a Medicamentos , Humanos , Quênia , Malária Falciparum/tratamento farmacológico , Mutação , Plasmodium falciparum , Proteínas de Protozoários/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-29439965

RESUMO

The recent advances in next-generation sequencing technologies provide a new and effective way of tracking malaria drug-resistant parasites. To take advantage of this technology, an end-to-end Illumina targeted amplicon deep sequencing (TADS) and bioinformatics pipeline for molecular surveillance of drug resistance in P. falciparum, called malaria resistance surveillance (MaRS), was developed. TADS relies on PCR enriching genomic regions, specifically target genes of interest, prior to deep sequencing. MaRS enables researchers to simultaneously collect data on allele frequencies of multiple full-length P. falciparum drug resistance genes (crt, mdr1, k13, dhfr, dhps, and the cytochrome b gene), as well as the mitochondrial genome. Information is captured at the individual patient level for both known and potential new single nucleotide polymorphisms associated with drug resistance. The MaRS pipeline was validated using 245 imported malaria cases that were reported to the Centers for Disease Control and Prevention (CDC). The chloroquine resistance crt CVIET genotype (mutations underlined) was observed in 42% of samples, the highly pyrimethamine-resistant dhpsIRN triple mutant in 92% of samples, and the sulfadoxine resistance dhps mutation SGEAA in 26% of samples. The mdr1 NFSND genotype was found in 40% of samples. With the exception of two cases imported from Cambodia, no artemisinin resistance k13 alleles were identified, and 99% of patients carried parasites susceptible to atovaquone-proguanil. Our goal is to implement MaRS at the CDC for routine surveillance of imported malaria cases in the United States and to aid in the adoption of this system at participating state public health laboratories, as well as by global partners.


Assuntos
Antimaláricos/farmacologia , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Resistência a Medicamentos , Genótipo , Malária/parasitologia , Malária/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Polimorfismo de Nucleotídeo Único/genética , Pirimetamina/farmacologia , Sulfadoxina/farmacologia
5.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28887423

RESUMO

The human microbiome contributes significantly to the genetic content of the human body. Genetic and environmental factors help shape the microbiome, and as such, the microbiome can be unique to an individual. Previous studies have demonstrated the potential to use microbiome profiling for forensic applications; however, a method has yet to identify stable features of skin microbiomes that produce high classification accuracies for samples collected over reasonably long time intervals. A novel approach is described here to classify skin microbiomes to their donors by comparing two feature types: Propionibacterium acnes pangenome presence/absence features and nucleotide diversities of stable clade-specific markers. Supervised learning was used to attribute skin microbiomes from 14 skin body sites from 12 healthy individuals sampled at three time points over a >2.5-year period with accuracies of up to 100% for three body sites. Feature selection identified a reduced subset of markers from each body site that are highly individualizing, identifying 187 markers from 12 clades. Classification accuracies were compared in a formal model testing framework, and the results of this analysis indicate that learners trained on nucleotide diversity perform significantly better than those trained on presence/absence encodings. This study used supervised learning to identify individuals with high accuracy and associated stable features from skin microbiomes over a period of up to almost 3 years. These selected features provide a preliminary marker panel for future development of a robust and reproducible method for skin microbiome profiling for forensic human identification.IMPORTANCE A novel approach is described to attribute skin microbiomes, collected over a period of >2.5 years, to their individual hosts with a high degree of accuracy. Nucleotide diversities of stable clade-specific markers with supervised learning were used to classify skin microbiomes from a particular individual with up to 100% classification accuracy for three body sites. Attribute selection was used to identify 187 genetic markers from 12 clades which provide the greatest differentiation of individual skin microbiomes from 14 skin sites. This study performs skin microbiome profiling from a supervised learning approach and obtains high classification accuracy for samples collected from individuals over a relatively long time period for potential application to forensic human identification.

6.
Nature ; 478(7370): 506-10, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21993626

RESUMO

Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348-1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347-1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections.


Assuntos
Genoma Bacteriano/genética , Peste/microbiologia , Yersinia pestis/genética , Yersinia pestis/isolamento & purificação , Cromossomos Bacterianos/genética , Mapeamento de Sequências Contíguas , Polpa Dentária/microbiologia , Evolução Molecular , História Medieval , Humanos , Londres/epidemiologia , Dados de Sequência Molecular , Filogenia , Peste/epidemiologia , Peste/transmissão , Plasmídeos/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Virulência/genética , Yersinia pestis/classificação
7.
Forensic Sci Med Pathol ; 13(3): 342-349, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28631109

RESUMO

The field of forensic genetics has made great strides in the analysis of biological evidence related to criminal and civil matters. More so, the discipline has set a standard of performance and quality in the forensic sciences. The advent of massively parallel sequencing will allow the field to expand its capabilities substantially. This review describes the salient features of massively parallel sequencing and how it can impact forensic genetics. The features of this technology offer increased number and types of genetic markers that can be analyzed, higher throughput of samples, and the capability of targeting different organisms, all by one unifying methodology. While there are many applications, three are described where massively parallel sequencing will have immediate impact: molecular autopsy, microbial forensics and differentiation of monozygotic twins. The intent of this review is to expose the forensic science community to the potential enhancements that have or are soon to arrive and demonstrate the continued expansion the field of forensic genetics and its service in the investigation of legal matters.


Assuntos
Genética Forense , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Bioterrorismo , Citocromo P-450 CYP2D6/genética , DNA Bacteriano/genética , Humanos , Microbiota/genética , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Gêmeos Monozigóticos/genética
8.
J Clin Microbiol ; 54(8): 1964-74, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26912746

RESUMO

Microbial forensics has been defined as the discipline of applying scientific methods to the analysis of evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a biological agent or toxin for attribution purposes. Over the past 15 years, technology, particularly massively parallel sequencing, and bioinformatics advances now allow the characterization of microorganisms for a variety of human forensic applications, such as human identification, body fluid characterization, postmortem interval estimation, and biocrimes involving tracking of infectious agents. Thus, microbial forensics should be more broadly described as the discipline of applying scientific methods to the analysis of microbial evidence in criminal and civil cases for investigative purposes.


Assuntos
Medicina Legal/métodos , Técnicas Microbiológicas/métodos , Biologia Computacional/métodos , Medicina Legal/tendências , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Técnicas Microbiológicas/tendências
9.
Proc Natl Acad Sci U S A ; 108(38): E746-52, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21876176

RESUMO

Although investigations of medieval plague victims have identified Yersinia pestis as the putative etiologic agent of the pandemic, methodological limitations have prevented large-scale genomic investigations to evaluate changes in the pathogen's virulence over time. We screened over 100 skeletal remains from Black Death victims of the East Smithfield mass burial site (1348-1350, London, England). Recent methods of DNA enrichment coupled with high-throughput DNA sequencing subsequently permitted reconstruction of ten full human mitochondrial genomes (16 kb each) and the full pPCP1 (9.6 kb) virulence-associated plasmid at high coverage. Comparisons of molecular damage profiles between endogenous human and Y. pestis DNA confirmed its authenticity as an ancient pathogen, thus representing the longest contiguous genomic sequence for an ancient pathogen to date. Comparison of our reconstructed plasmid against modern Y. pestis shows identity with several isolates matching the Medievalis biovar; however, our chromosomal sequences indicate the victims were infected with a Y. pestis variant that has not been previously reported. Our data reveal that the Black Death in medieval Europe was caused by a variant of Y. pestis that may no longer exist, and genetic data carried on its pPCP1 plasmid were not responsible for the purported epidemiological differences between ancient and modern forms of Y. pestis infections.


Assuntos
DNA Bacteriano/genética , Peste/microbiologia , Plasmídeos/genética , Yersinia pestis/genética , Adulto , Técnicas de Tipagem Bacteriana , Sequência de Bases , Osso e Ossos/metabolismo , Osso e Ossos/microbiologia , DNA Bacteriano/química , DNA Mitocondrial/química , DNA Mitocondrial/genética , Europa (Continente)/epidemiologia , Feminino , Variação Genética , História Medieval , Humanos , Masculino , Dados de Sequência Molecular , Pandemias/história , Peste/epidemiologia , Peste/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Dente/metabolismo , Dente/microbiologia , Virulência/genética , Yersinia pestis/classificação , Yersinia pestis/patogenicidade
10.
Microbiol Spectr ; : e0384523, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349187

RESUMO

Mycoplasma genitalium is fastidious to culture, and its detection in human clinical specimens relies mainly on molecular methods. Phenotypic determination of antibiotic susceptibility for this bacterium is not a timely or feasible option for most clinical laboratories. This study sought to determine whether next-generation sequencing technologies can effectively be employed in determining genetic mutations associated with drug resistance in M. genitalium samples collected in Aptima Hologic tubes and possibly integrating them into viable workflows in public health laboratories. Following analysis by a custom-designed bioinformatics pipeline, at least one mutation/sample has been identified in 94/98 specimens in at least one of seven loci (macrolides: rrl, rplD, rplV; fluoroquinolones: parC, parE, gyrA, gyrB) described previously to be connected to antibiotic resistance. This method identified a total of 469 single nucleotide polymorphisms (SNPs) (452 mutations): 134 of 23S rRNA SNPs and 318 amino acid mutations: 114 substitutions and 204 synonymous; the turnaround time (sample to analyzed sequence) was typically 3 days. The assays and workflows described in this work demonstrated that the determination of a drug resistance profile for macrolides and fluoroquinolones of M. genitalium samples by using next-generation sequencing in clinical samples is a feasible approach that can be implemented in clinical laboratories, following thorough and extensive validation studies.IMPORTANCEThe mechanisms of drug resistance in Mycoplasma genitalium are complex and involve several genetic loci. The molecular methods for accurately characterizing resistance to fluoroquinolones and macrolides in this organism are often not available or approved for patient use and do not cover all genetic determinants. To this end, we propose a next-generation sequencing-based method with a turnaround time of 3 days that includes the investigation of all drug resistance loci of M. genitalium. Following adaptation, validation, and verification for routine clinical use, assays based on this method may yield molecular results that can be used to guide proper treatment regimens and for surveillance of drug resistance in the general population.

11.
Microb Genom ; 10(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860884

RESUMO

As public health laboratories expand their genomic sequencing and bioinformatics capacity for the surveillance of different pathogens, labs must carry out robust validation, training, and optimization of wet- and dry-lab procedures. Achieving these goals for algorithms, pipelines and instruments often requires that lower quality datasets be made available for analysis and comparison alongside those of higher quality. This range of data quality in reference sets can complicate the sharing of sub-optimal datasets that are vital for the community and for the reproducibility of assays. Sharing of useful, but sub-optimal datasets requires careful annotation and documentation of known issues to enable appropriate interpretation, avoid being mistaken for better quality information, and for these data (and their derivatives) to be easily identifiable in repositories. Unfortunately, there are currently no standardized attributes or mechanisms for tagging poor-quality datasets, or datasets generated for a specific purpose, to maximize their utility, searchability, accessibility and reuse. The Public Health Alliance for Genomic Epidemiology (PHA4GE) is an international community of scientists from public health, industry and academia focused on improving the reproducibility, interoperability, portability, and openness of public health bioinformatic software, skills, tools and data. To address the challenges of sharing lower quality datasets, PHA4GE has developed a set of standardized contextual data tags, namely fields and terms, that can be included in public repository submissions as a means of flagging pathogen sequence data with known quality issues, increasing their discoverability. The contextual data tags were developed through consultations with the community including input from the International Nucleotide Sequence Data Collaboration (INSDC), and have been standardized using ontologies - community-based resources for defining the tag properties and the relationships between them. The standardized tags are agnostic to the organism and the sequencing technique used and thus can be applied to data generated from any pathogen using an array of sequencing techniques. The tags can also be applied to synthetic (lab created) data. The list of standardized tags is maintained by PHA4GE and can be found at https://github.com/pha4ge/contextual_data_QC_tags. Definitions, ontology IDs, examples of use, as well as a JSON representation, are provided. The PHA4GE QC tags were tested, and are now implemented, by the FDA's GenomeTrakr laboratory network as part of its routine submission process for SARS-CoV-2 wastewater surveillance. We hope that these simple, standardized tags will help improve communication regarding quality control in public repositories, in addition to making datasets of variable quality more easily identifiable. Suggestions for additional tags can be submitted to PHA4GE via the New Term Request Form in the GitHub repository. By providing a mechanism for feedback and suggestions, we also expect that the tags will evolve with the needs of the community.


Assuntos
Biologia Computacional , Saúde Pública , Controle de Qualidade , Humanos , Biologia Computacional/métodos , Disseminação de Informação/métodos , Reprodutibilidade dos Testes , Anotação de Sequência Molecular/métodos , Genômica/métodos , Software
12.
Int J Legal Med ; 127(4): 749-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23254459

RESUMO

Various types of biological samples present challenges for extraction of DNA suitable for subsequent molecular analyses. Commonly used extraction methods, such as silica membrane columns and phenol-chloroform, while highly successful may still fail to provide a sufficiently pure DNA extract with some samples. Synchronous coefficient of drag alteration (SCODA), implemented in Boreal Genomics' Aurora Nucleic Acid Extraction System (Boreal Genomics, Vancouver, BC), is a new technology that offers the potential to remove inhibitors effectively while simultaneously concentrating DNA. In this initial study, SCODA was tested for its ability to remove various concentrations of forensically and medically relevant polymerase chain reaction (PCR) inhibitors naturally found in tissue, hair, blood, plant, and soil samples. SCODA was used to purify and concentrate DNA from intentionally contaminated DNA samples containing known concentrations of hematin, humic acid, melanin, and tannic acid. The internal positive control (IPC) provided in the Quantifiler™ Human DNA Quantification Kit (Life Technologies, Foster City, CA) and short tandem repeat (STR) profiling (AmpFℓSTR® Identifiler® Plus PCR Amplification Kit; Life Technologies, Foster City, CA) were used to measure inhibition effects and hence purification. SCODA methodology yielded overall higher efficiency of purification of highly contaminated samples compared with the QIAquick® PCR Purification Kit (Qiagen, Valencia, CA). SCODA-purified DNA yielded no cycle shift of the IPC for each sample and yielded greater allele percentage recovery and relative fluorescence unit values compared with the QIAquick® purification method. The Aurora provided an automated, minimal-step approach to successfully remove inhibitors and concentrate DNA from challenged samples.


Assuntos
Impressões Digitais de DNA/métodos , DNA/isolamento & purificação , Contaminação por DNA , Eletroforese , Hemina/química , Humanos , Substâncias Húmicas , Melaninas/química , Repetições de Microssatélites , Reação em Cadeia da Polimerase , Taninos/química
13.
Open Forum Infect Dis ; 10(5): ofad194, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37180588

RESUMO

Background: Contaminated healthcare facility wastewater plumbing is recognized as a source of carbapenemase-producing organism transmission. In August 2019, the Tennessee Department of Health (TDH) identified a patient colonized with Verona integron-encoded metallo-beta-lactamase-producing carbapenem-resistant Pseudomonas aeruginosa (VIM-CRPA). A record review revealed that 33% (4 of 12) of all reported patients in Tennessee with VIM had history of prior admission to acute care hospital (ACH) A intensive care unit (ICU) Room X, prompting further investigation. Methods: A case was defined as polymerase chain reaction detection of blaVIM in a patient with prior admission to ACH A from November 2017 to November 2020. The TDH performed point prevalence surveys, discharge screening, onsite observations, and environmental testing at ACH A. The VIM-CRPA isolates underwent whole-genome sequencing (WGS). Results: In a screening of 44% (n = 11) of 25 patients admitted to Room X between January and June 2020, we identified 36% (n = 4) colonized with VIM-CRPA, resulting in 8 cases associated with Room X from March 2018 to June 2020. No additional cases were identified in 2 point-prevalence surveys of the ACH A ICU. Samples from the bathroom and handwashing sink drains in Room X grew VIM-CRPA; all available case and environmental isolates were found to be ST253 harboring blaVIM-1 and to be closely related by WGS. Transmission ended after implementation of intensive water management and infection control interventions. Conclusions: A single ICU room's contaminated drains were associated with 8 VIM-CRPA cases over a 2-year period. This outbreak highlights the need to include wastewater plumbing in hospital water management plans to mitigate the risk of transmission of antibiotic-resistant organisms to patients.

14.
medRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873191

RESUMO

Background: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. Results: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 101-102 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. Conclusions: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.

15.
Ecohealth ; 19(2): 203-215, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35655049

RESUMO

Extreme weather events, particularly heavy rainfall, are occurring at greater frequency with climate change. Although adverse human health effects from heavy rainfall are often publicized, impacts to free-ranging wildlife populations are less well known. We first summarize documented associations of heavy rainfall on wildlife health. We then report a novel investigation of a salmonellosis outbreak in a colony of black skimmers (Rynchops niger) in Florida, USA. During June-September 2016, heavy rainfall resulted in the discharge of millions of gallons of untreated wastewater into the Tampa Bay system, contaminating the water body, where adult skimmers foraged. At least 48 fledglings died, comprising 39% of the colony's nesting season's offspring. Of eight examined deceased birds from the colony, six had a systemic salmonellosis infection. Isolates were identified as Salmonella enterica serotype Typhimurium. Their pulsed-field gel electrophoresis patterns were identical to each other and matched those from several human Salmonella sp. infections. Differences among whole-genome sequences were negligible. These findings and the outbreak's epidemic curve suggest propagated transmission occurred within the colony. A multidisciplinary and One Health approach is recommended to mitigate any adverse effects of climate change-driven stochastic events, especially when they place already imperiled wildlife at further risk.


Assuntos
Charadriiformes , Infecções por Salmonella , Animais , Aves , Níger/epidemiologia , Salmonella , Infecções por Salmonella/epidemiologia
16.
Viruses ; 14(4)2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35458495

RESUMO

SARS-CoV-2, the causative agent of COVID-19, emerged in late 2019. The highly contagious B.1.617.2 (Delta) variant of concern (VOC) was first identified in October 2020 in India and subsequently disseminated worldwide, later becoming the dominant lineage in the US. Understanding the local transmission dynamics of early SARS-CoV-2 introductions may inform actionable mitigation efforts during subsequent pandemic waves. Yet, despite considerable genomic analysis of SARS-CoV-2 in the US, several gaps remain. Here, we explore the early emergence of the Delta variant in Florida, US using phylogenetic analysis of representative Florida and globally sampled genomes. We find multiple independent introductions into Florida primarily from North America and Europe, with a minority originating from Asia. These introductions led to three distinct clades that demonstrated varying relative rates of transmission and possessed five distinct substitutions that were 3-21 times more prevalent in the Florida sample as compared to the global sample. Our results underscore the benefits of routine viral genomic surveillance to monitor epidemic spread and support the need for more comprehensive genomic epidemiology studies of emerging variants. In addition, we provide a model of epidemic spread of newly emerging VOCs that can inform future public health responses.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Florida/epidemiologia , Humanos , Mutação , Filogenia , SARS-CoV-2/genética
17.
PLoS One ; 17(9): e0275096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36174056

RESUMO

BACKGROUND: Plasmodium blood-stage infections can be identified by assaying for protein products expressed by the parasites. While the binary result of an antigen test is sufficient for a clinical result, greater nuance can be gathered for malaria infection status based on quantitative and sensitive detection of Plasmodium antigens and machine learning analytical approaches. METHODS: Three independent malaria studies performed in Angola and Haiti enrolled persons at health facilities and collected a blood sample. Presence and parasite density of P. falciparum infection was determined by microscopy for a study in Angola in 2015 (n = 193), by qRT-PCR for a 2016 study in Angola (n = 208), and by qPCR for a 2012-2013 Haiti study (n = 425). All samples also had bead-based detection and quantification of three Plasmodium antigens: pAldolase, pLDH, and HRP2. Decision trees and principal component analysis (PCA) were conducted in attempt to categorize P. falciparum parasitemia density status based on continuous antigen concentrations. RESULTS: Conditional inference trees were trained using the known P. falciparum infection status and corresponding antigen concentrations, and PCR infection status was predicted with accuracies ranging from 73-96%, while level of parasite density was predicted with accuracies ranging from 59-72%. Multiple decision nodes were created for both pAldolase and HRP2 antigens. For all datasets, dichotomous infectious status was more accurately predicted when compared to categorization of different levels of parasite densities. PCA was able to account for a high level of variance (>80%), and distinct clustering was found in both dichotomous and categorical infection status. CONCLUSIONS: This pilot study offers a proof-of-principle of the utility of machine learning approaches to assess P. falciparum infection status based on continuous concentrations of multiple Plasmodium antigens.


Assuntos
Malária Falciparum , Plasmodium falciparum , Antígenos de Protozoários , Humanos , Aprendizado de Máquina , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Projetos Piloto , Reação em Cadeia da Polimerase em Tempo Real
18.
Int J Infect Dis ; 107: 234-241, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33940188

RESUMO

BACKGROUND: Recent studies showed the first emergence of the R561H artemisinin-associated resistance marker in Africa, which highlights the importance of continued molecular surveillance to assess the selection and spread of this and other drug resistance markers in the region. METHOD: In this study, we used targeted amplicon deep sequencing of 116 isolates collected in two areas of Cameroon to genotype the major drug resistance genes, k13, crt, mdr1, dhfr, and dhps, and the cytochrome b gene (cytb) in Plasmodium falciparum. RESULTS: No confirmed or associated artemisinin resistance markers were observed in Pfk13. In comparison, both major and minor alleles associated with drug resistance were found in Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps. Notably, a high frequency of other nonsynonymous mutations was observed across all the genes, except for Pfcytb, suggesting continued selection pressure. CONCLUSIONS: The results from this study supported the continued use of artemisinin-based combination therapy and administration of sulfadoxine-pyrimethamine for intermittent preventive therapy in pregnant women, and for seasonal chemoprevention in these study sites in Cameroon.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Marcadores Genéticos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Alelos , Camarões , Feminino , Genótipo , Humanos , Mutação , Plasmodium falciparum/isolamento & purificação , Gravidez
19.
Am J Trop Med Hyg ; 105(4): 1067-1075, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491220

RESUMO

Routine assessment of the efficacy of artemisinin-based combination therapies (ACTs) is critical for the early detection of antimalarial resistance. We evaluated the efficacy of ACTs recommended for treatment of uncomplicated malaria in five sites in Democratic Republic of the Congo (DRC): artemether-lumefantrine (AL), artesunate-amodiaquine (ASAQ), and dihydroartemisinin-piperaquine (DP). Children aged 6-59 months with confirmed Plasmodium falciparum malaria were treated with one of the three ACTs and monitored. The primary endpoints were uncorrected and polymerase chain reaction (PCR)-corrected 28-day (AL and ASAQ) or 42-day (DP) cumulative efficacy. Molecular markers of resistance were investigated. Across the sites, uncorrected efficacy estimates ranged from 63% to 88% for AL, 73% to 100% for ASAQ, and 56% to 91% for DP. PCR-corrected efficacy estimates ranged from 86% to 98% for AL, 91% to 100% for ASAQ, and 84% to 100% for DP. No pfk13 mutations previously found to be associated with ACT resistance were observed. Statistically significant associations were found between certain pfmdr1 and pfcrt genotypes and treatment outcome. There is evidence of efficacy below the 90% cutoff recommended by WHO to consider a change in first-line treatment recommendations of two ACTs in one site not far from a monitoring site in Angola that has shown similar reduced efficacy for AL. Confirmation of these findings in future therapeutic efficacy monitoring in DRC is warranted.


Assuntos
Amodiaquina/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Piperazinas/uso terapêutico , Quinolinas/uso terapêutico , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Artemisininas/administração & dosagem , Pré-Escolar , Congo/epidemiologia , Combinação de Medicamentos , Resistência a Medicamentos , Feminino , Humanos , Lactente , Malária Falciparum/epidemiologia , Masculino , Piperazinas/administração & dosagem , Plasmodium falciparum , Quinolinas/administração & dosagem
20.
Parasit Vectors ; 13(1): 137, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171330

RESUMO

BACKGROUND: Routine molecular surveillance for imported drug-resistant malaria parasites to the USA and European Union is an important public health activity. The obtained molecular data are used to help keep chemoprophylaxis and treatment guidelines up to date for persons traveling to malaria endemic countries. Recent advances in next-generation sequencing (NGS) technologies provide a new and effective way of tracking malaria drug-resistant parasites. METHODS: As part of a technology transfer arrangement between the CDC Malaria Branch and the Istituto Superiore di Sanità (ISS), Rome, Italy, the recently described Malaria Resistance Surveillance (MaRS) protocol was used to genotype 148 Plasmodium falciparum isolates from Eritrea for kelch 13 (k13) and cytochrome b (cytb) genes, molecular markers associated with resistance to artemisinin (ART) and atovaquone/proguanil (AP), respectively. RESULTS: Spanning the full-length k13 gene, seven non-synonymous single nucleotide polymorphisms (SNPs) were found (K189N, K189T, E208K, D281V, E401Q, R622I and T535M), of which none have been associated with artemisinin resistance. No mutations were found in cytochrome b. CONCLUSION: All patients successfully genotyped carried parasites susceptible to ART and AP treatment. Future studies between CDC Malaria Branch and ISS are planned to expand the MaRS system, including data sharing, in an effort to maintain up to date treatment guidelines for travelers to malaria endemic countries.


Assuntos
Citocromos b/genética , Resistência a Medicamentos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/genética , África , Anti-Infecciosos/farmacologia , Antimaláricos/farmacologia , Artemisininas , Atovaquona/farmacologia , DNA de Protozoário/genética , Proteínas de Drosophila , Combinação de Medicamentos , Genótipo , Humanos , Itália , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Proteínas dos Microfilamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Prevalência , Proguanil/farmacologia , Viagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa