Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
New Phytol ; 240(1): 439-451, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37381111

RESUMO

Bacteria colonize plant roots and engage in reciprocal interactions with their hosts. However, the contribution of individual taxa or groups of bacteria to plant nutrition and fitness is not well characterized due to a lack of in situ evidence of bacterial activity. To address this knowledge gap, we developed an analytical approach that combines the identification and localization of individual bacteria on root surfaces via gold-based in situ hybridization with correlative NanoSIMS imaging of incorporated stable isotopes, indicative of metabolic activity. We incubated Kosakonia strain DS-1-associated, gnotobiotically grown rice plants with 15 N-N2 gas to detect in situ N2 fixation activity. Bacterial cells along the rhizoplane showed heterogeneous patterns of 15 N enrichment, ranging from the natural isotope abundance levels up to 12.07 at% 15 N (average and median of 3.36 and 2.85 at% 15 N, respectively, n = 697 cells). The presented correlative optical and chemical imaging analysis is applicable to a broad range of studies investigating plant-microbe interactions. For example, it enables verification of the in situ metabolic activity of host-associated commercialized strains or plant growth-promoting bacteria, thereby disentangling their role in plant nutrition. Such data facilitate the design of plant-microbe combinations for improvement of crop management.


Assuntos
Oryza , Rizosfera , Bactérias/metabolismo , Hibridização In Situ , Plantas , Raízes de Plantas/microbiologia , Microbiologia do Solo
2.
EMBO Rep ; 22(2): e48961, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33512764

RESUMO

Endothelial tip cells are essential for VEGF-induced angiogenesis, but underlying mechanisms are elusive. The Ena/VASP protein family, consisting of EVL, VASP, and Mena, plays a pivotal role in axon guidance. Given that axonal growth cones and endothelial tip cells share many common features, from the morphological to the molecular level, we investigated the role of Ena/VASP proteins in angiogenesis. EVL and VASP, but not Mena, are expressed in endothelial cells of the postnatal mouse retina. Global deletion of EVL (but not VASP) compromises the radial sprouting of the vascular plexus in mice. Similarly, endothelial-specific EVL deletion compromises the radial sprouting of the vascular plexus and reduces the endothelial tip cell density and filopodia formation. Gene sets involved in blood vessel development and angiogenesis are down-regulated in EVL-deficient P5-retinal endothelial cells. Consistently, EVL deletion impairs VEGF-induced endothelial cell proliferation and sprouting, and reduces the internalization and phosphorylation of VEGF receptor 2 and its downstream signaling via the MAPK/ERK pathway. Together, we show that endothelial EVL regulates sprouting angiogenesis via VEGF receptor-2 internalization and signaling.


Assuntos
Moléculas de Adesão Celular/fisiologia , Células Endoteliais , Neovascularização Fisiológica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Células Endoteliais/metabolismo , Camundongos , Morfogênese , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Euro Surveill ; 26(34)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34448449

RESUMO

This study evaluates the performance of the antigen-based anterior nasal screening programme implemented in all Austrian schools to detect SARS-CoV-2 infections. We combined nationwide antigen-based screening data obtained in March 2021 from 5,370 schools (Grade 1-8) with an RT-qPCR-based prospective cohort study comprising a representative sample of 244 schools. Considering a range of assumptions, only a subset of infected individuals are detected with the programme (low to moderate sensitivity) and non-infected individuals mainly tested negative (very high specificity).


Assuntos
COVID-19 , SARS-CoV-2 , Áustria , Humanos , Estudos Prospectivos , Instituições Acadêmicas , Autoteste
4.
Cereb Cortex ; 29(8): 3590-3604, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30272140

RESUMO

Understanding the migration of newborn neurons within the brain presents a major challenge in contemporary biology. Neuronal migration is widespread within the developing brain but is also important within the adult brain. For instance, stem cells within the ventricular-subventricular zone (V-SVZ) and the subgranular zone of dentate gyrus of the adult rodent brain produce neuroblasts that migrate to the olfactory bulb and granule cell layer of the dentate gyrus, respectively, where they regulate key brain functions including innate olfactory responses, learning, and memory. Critically, our understanding of the factors mediating neuroblast migration remains limited. The transcription factor nuclear factor I X (NFIX) has previously been implicated in embryonic cortical development. Here, we employed conditional ablation of Nfix from the adult mouse brain and demonstrated that the removal of this gene from either neural stem and progenitor cells, or neuroblasts, within the V-SVZ culminated in neuroblast migration defects. Mechanistically, we identified aberrant neuroblast branching, due in part to increased expression of the guanylyl cyclase natriuretic peptide receptor 2 (Npr2), as a factor contributing to abnormal migration in Nfix-deficient adult mice. Collectively, these data provide new insights into how neuroblast migration is regulated at a transcriptional level within the adult brain.


Assuntos
Movimento Celular/genética , Giro Denteado/citologia , Ventrículos Laterais/citologia , Fatores de Transcrição NFI/genética , Células-Tronco Neurais/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Camundongos , Células-Tronco Neurais/citologia , Neurogênese/genética , Receptores do Fator Natriurético Atrial/genética
5.
J Neurosci ; 38(45): 9768-9780, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30249793

RESUMO

cGMP signaling elicited by activation of the transmembrane receptor guanylyl cyclase Npr2 (also known as guanylyl cyclase B) by the ligand CNP controls sensory axon bifurcation of DRG and cranial sensory ganglion (CSG) neurons entering the spinal cord or hindbrain, respectively. Previous studies have shown that Npr2 is phosphorylated on serine and threonine residues in its kinase homology domain (KHD). However, it is unknown whether phosphorylation of Npr2 is essential for axon bifurcation. Here, we generated a knock-in mouse line in which the seven regulatory serine and threonine residues in the KHD of Npr2 were substituted by alanine (Npr2-7A), resulting in a nonphosphorylatable enzyme. Real-time imaging of cGMP in DRG neurons with a genetically encoded fluorescent cGMP sensor or biochemical analysis of guanylyl cyclase activity in brain or lung tissue revealed the absence of CNP-induced cGMP generation in the Npr27A/7A mutant. Consequently, bifurcation of axons, but not collateral formation, from DRG or CSG in this mouse mutant was perturbed at embryonic and mature stages. In contrast, axon branching was normal in a mouse mutant in which constitutive phosphorylation of Npr2 is mimicked by a replacement of all of the seven serine and threonine sites by glutamic acid (Npr2-7E). Furthermore, we demonstrate that the Npr27A/7A mutation causes dwarfism as described for global Npr2 mutants. In conclusion, our in vivo studies provide strong evidence that phosphorylation of the seven serine and threonine residues in the KHD of Npr2 is an important regulatory element of Npr2-mediated cGMP signaling which affects physiological processes, such as axon bifurcation and bone growth.SIGNIFICANCE STATEMENT The branching of axons is a morphological hallmark of virtually all neurons. It allows an individual neuron to innervate different targets and to communicate with neurons located in different regions of the nervous system. The natriuretic peptide receptor 2 (Npr2), a transmembrane guanylyl cyclase, is essential for the initiation of bifurcation of sensory axons when entering the spinal cord or the hindbrain. By using two genetically engineered mouse lines, we show that phosphorylation of specific serine and threonine residues in juxtamembrane regions of Npr2 are required for its enzymatic activity and for axon bifurcation. These investigations might help to understand the regulation of Npr2 and its integration in intracellular signaling systems.


Assuntos
Axônios/fisiologia , Gânglios Sensitivos/fisiologia , Receptores do Fator Natriurético Atrial/fisiologia , Serina/metabolismo , Treonina/metabolismo , Animais , Feminino , Gânglios Espinais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/fisiologia , Gravidez , Células Receptoras Sensoriais/fisiologia , Serina/genética , Treonina/genética
6.
Circulation ; 138(5): 494-508, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29626067

RESUMO

BACKGROUND: Peripheral vascular resistance has a major impact on arterial blood pressure levels. Endothelial C-type natriuretic peptide (CNP) participates in the local regulation of vascular tone, but the target cells remain controversial. The cGMP-producing guanylyl cyclase-B (GC-B) receptor for CNP is expressed in vascular smooth muscle cells (SMCs). However, whereas endothelial cell-specific CNP knockout mice are hypertensive, mice with deletion of GC-B in vascular SMCs have unaltered blood pressure. METHODS: We analyzed whether the vasodilating response to CNP changes along the vascular tree, ie, whether the GC-B receptor is expressed in microvascular types of cells. Mice with a floxed GC-B ( Npr2) gene were interbred with Tie2-Cre or PDGF-Rß-Cre ERT2 lines to develop mice lacking GC-B in endothelial cells or in precapillary arteriolar SMCs and capillary pericytes. Intravital microscopy, invasive and noninvasive hemodynamics, fluorescence energy transfer studies of pericyte cAMP levels in situ, and renal physiology were combined to dissect whether and how CNP/GC-B/cGMP signaling modulates microcirculatory tone and blood pressure. RESULTS: Intravital microscopy studies revealed that the vasodilatatory effect of CNP increases toward small-diameter arterioles and capillaries. CNP consistently did not prevent endothelin-1-induced acute constrictions of proximal arterioles, but fully reversed endothelin effects in precapillary arterioles and capillaries. Here, the GC-B receptor is expressed both in endothelial and mural cells, ie, in pericytes. It is notable that the vasodilatatory effects of CNP were preserved in mice with endothelial GC-B deletion, but abolished in mice lacking GC-B in microcirculatory SMCs and pericytes. CNP, via GC-B/cGMP signaling, modulates 2 signaling cascades in pericytes: it activates cGMP-dependent protein kinase I to phosphorylate downstream targets such as the cytoskeleton-associated vasodilator-activated phosphoprotein, and it inhibits phosphodiesterase 3A, thereby enhancing pericyte cAMP levels. These pathways ultimately prevent endothelin-induced increases of pericyte calcium levels and pericyte contraction. Mice with deletion of GC-B in microcirculatory SMCs and pericytes have elevated peripheral resistance and chronic arterial hypertension without a change in renal function. CONCLUSIONS: Our studies indicate that endothelial CNP regulates distal arteriolar and capillary blood flow. CNP-induced GC-B/cGMP signaling in microvascular SMCs and pericytes is essential for the maintenance of normal microvascular resistance and blood pressure.


Assuntos
Pressão Arterial/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Hipertensão/metabolismo , Microcirculação/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Peptídeo Natriurético Tipo C/farmacologia , Pericitos/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Técnicas Biossensoriais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , GMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Transferência Ressonante de Energia de Fluorescência , Predisposição Genética para Doença , Hipertensão/genética , Hipertensão/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/metabolismo , Microvasos/fisiopatologia , Peptídeo Natriurético Tipo C/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Fenótipo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/deficiência , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator Natriurético Atrial/deficiência , Receptores do Fator Natriurético Atrial/genética
7.
Cell Tissue Res ; 378(1): 15-32, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31201541

RESUMO

Npr2 (natriuretic peptide receptor 2) affects bifurcation of neural crest or placode-derived afferents upon entering the brain stem/spinal cord, leading to a lack of either rostral or caudal branches. Previous work has shown that early embryonic growth of cochlear and vestibular afferents is equally affected in this mutant but later work on postnatal Npr2 point mutations suggested some additional effects on the topology of afferent projections and mild functional defects. Using multicolor lipophilic dye tracing, we show that absence of Npr2 has little to no effect on the initial patterning of inner ear afferents with respect to their dorsoventral cochleotopic-specific projections. However, in contrast to control animals, we found a variable degree of embryonic extension of auditory afferents beyond the boundaries of the anterior cochlear nucleus into the cerebellum that emanates only from apical spiral ganglion neurons. Such expansion has previously only been reported for Hox gene mutants and implies an unclear interaction of Hox codes with Npr2-mediated afferent projection patterning to define boundaries. Some vestibular ganglion neurons expand their projections to reach the cochlear apex and the cochlear nuclei, comparable to previous findings in Neurod1 mutant mice. Before birth, such expansions are reduced or lost leading to truncated projections to the anteroventral cochlear nucleus and expansion of low-frequency fibers of the apex to the posteroventral cochlear nucleus.


Assuntos
Vias Auditivas/embriologia , Axônios/fisiologia , Receptores do Fator Natriurético Atrial/fisiologia , Gânglio Espiral da Cóclea/embriologia , Animais , Mutação com Perda de Função , Camundongos , Receptores do Fator Natriurético Atrial/genética
8.
Int J Mol Sci ; 19(5)2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29695045

RESUMO

Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP)-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, neurons in dorsal root ganglia (DRG) and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.


Assuntos
Axônios/metabolismo , GMP Cíclico/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Suscetibilidade a Doenças , Gânglios Sensitivos/citologia , Gânglios Sensitivos/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Humanos , Técnicas In Vitro , Receptores do Fator Natriurético Atrial/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Transmissão Sináptica
9.
Eur J Neurosci ; 44(12): 2991-3000, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27740716

RESUMO

A cyclic GMP (cGMP) signaling pathway, comprising C-type natriuretic peptide (CNP), its guanylate cyclase receptor Npr2, and cGMP-dependent protein kinase I, is critical for the bifurcation of dorsal root ganglion (DRG) and cranial sensory ganglion axons when entering the mouse spinal cord and the hindbrain respectively. However, the identity and functional relevance of phosphodiesterases (PDEs) that degrade cGMP in DRG neurons are not completely understood. Here, we asked whether regulation of the intracellular cGMP concentration by PDEs modulates the branching of sensory axons. Real-time imaging of cGMP with a genetically encoded fluorescent cGMP sensor, RT-PCR screens, in situ hybridization, and immunohistology combined with the analysis of mutant mice identified PDE2A as the major enzyme for the degradation of CNP-induced cGMP in embryonic DRG neurons. Tracking of PDE2A-deficient DRG sensory axons in conjunction with cGMP measurements indicated that axon bifurcation tolerates increased cGMP concentrations. As we found that the natriuretic peptide scavenger receptor Npr3 is expressed by cells associated with dorsal roots but not in DRG neurons itself at early developmental stages, we analyzed axonal branching in the absence of Npr3. In Npr3-deficient mice, the majority of sensory axons showed normal bifurcation, but a small population of axons (13%) was unable to form T-like branches and generated turns in rostral or caudal directions only. Taken together, this study shows that sensory axon bifurcation is insensitive to increases of CNP-induced cGMP levels and Npr3 does not have an important scavenging function in this axonal system.


Assuntos
Axônios/enzimologia , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Gânglios Espinais/embriologia , Gânglios Espinais/enzimologia , Peptídeo Natriurético Tipo C/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeo Natriurético Tipo C/administração & dosagem , Transdução de Sinais
10.
J Neurosci ; 34(3): 737-47, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24431432

RESUMO

Axonal branching is a prerequisite for the establishment of complex neuronal circuits and their capacity for parallel information processing. Previously, we have identified a cGMP signaling pathway composed of the ligand C-type natriuretic peptide (CNP), its receptor, the guanylyl cyclase natriuretic peptide receptor 2 (Npr2), and the cGMP-dependent kinase Iα (cGKIα) that regulates axon bifurcation of dorsal root ganglion (DRG) neurons in the spinal cord. Now we asked whether this cascade also controls axon bifurcation elsewhere in the nervous system. An Npr2-lacZ reporter mouse line was generated to clarify the pattern of the CNP receptor expression. It was found that during the period of axonal outgrowth, Npr2 and cGKIα were strongly labeled in neurons of all cranial sensory ganglia (gV, gVII, gVIII, gIX, and gX). In addition, strong complementary expression of CNP was detected in the hindbrain at the entry zones of sensory afferents. To analyze axon branching in individual Npr2-positive neurons, we generated a mouse mutant expressing a tamoxifen-inducible variant of Cre recombinase expressed under control of the Npr2-promoter (Npr2-CreER(T2)). After crossing this strain with conditional reporter mouse lines, we revealed that the complete absence of Npr2 activity indeed prohibited the bifurcation of cranial sensory axons in their entrance region. Consequently, axons only turned in either an ascending or descending direction, while collateral formation and growth of the peripheral arm was not affected. These findings indicate that in neurons of the cranial sensory ganglia, as in DRG neurons, cGMP signals are necessary for the execution of an axonal bifurcation program.


Assuntos
Axônios/química , Nervos Cranianos/química , GMP Cíclico/genética , Receptores do Fator Natriurético Atrial/deficiência , Células Receptoras Sensoriais/química , Transdução de Sinais/genética , Animais , Axônios/fisiologia , Nervos Cranianos/patologia , Nervos Cranianos/fisiologia , GMP Cíclico/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/patologia , Células-Tronco Embrionárias/fisiologia , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/fisiologia , Células Receptoras Sensoriais/patologia
11.
Nat Commun ; 15(1): 4151, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755154

RESUMO

Atmospheric methane oxidizing bacteria (atmMOB) constitute the sole biological sink for atmospheric methane. Still, the physiological basis allowing atmMOB to grow on air is not well understood. Here we assess the ability and strategies of seven methanotrophic species to grow with air as sole energy, carbon, and nitrogen source. Four species, including three outside the canonical atmMOB group USCα, enduringly oxidized atmospheric methane, carbon monoxide, and hydrogen during 12 months of growth on air. These four species exhibited distinct substrate preferences implying the existence of multiple metabolic strategies to grow on air. The estimated energy yields of the atmMOB were substantially lower than previously assumed necessary for cellular maintenance in atmMOB and other aerobic microorganisms. Moreover, the atmMOB also covered their nitrogen requirements from air. During growth on air, the atmMOB decreased investments in biosynthesis while increasing investments in trace gas oxidation. Furthermore, we confirm that a high apparent specific affinity for methane is a key characteristic of atmMOB. Our work shows that atmMOB grow on the trace concentrations of methane, carbon monoxide, and hydrogen present in air and outlines the metabolic strategies that enable atmMOB to mitigate greenhouse gases.


Assuntos
Monóxido de Carbono , Hidrogênio , Metano , Oxirredução , Metano/metabolismo , Monóxido de Carbono/metabolismo , Hidrogênio/metabolismo , Atmosfera/química , Ar , Nitrogênio/metabolismo , Gases de Efeito Estufa/metabolismo
12.
Nat Commun ; 14(1): 5895, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736743

RESUMO

Climate change increases the frequency and intensity of drought events, affecting soil functions including carbon sequestration and nutrient cycling, which are driven by growing microorganisms. Yet we know little about microbial responses to drought due to methodological limitations. Here, we estimate microbial growth rates in montane grassland soils exposed to ambient conditions, drought, and potential future climate conditions (i.e., soils exposed to 6 years of elevated temperatures and elevated CO2 levels). For this purpose, we combined 18O-water vapor equilibration with quantitative stable isotope probing (termed 'vapor-qSIP') to measure taxon-specific microbial growth in dry soils. In our experiments, drought caused >90% of bacterial and archaeal taxa to stop dividing and reduced the growth rates of persisting ones. Under drought, growing taxa accounted for only 4% of the total community as compared to 35% in the controls. Drought-tolerant communities were dominated by specialized members of the Actinobacteriota, particularly the genus Streptomyces. Six years of pre-exposure to future climate conditions (3 °C warming and + 300 ppm atmospheric CO2) alleviated drought effects on microbial growth, through more drought-tolerant taxa across major phyla, accounting for 9% of the total community. Our results provide insights into the response of active microbes to drought today and in a future climate, and highlight the importance of studying drought in combination with future climate conditions to capture interactive effects and improve predictions of future soil-climate feedbacks.


Assuntos
Dióxido de Carbono , Secas , Archaea , Sequestro de Carbono , Solo
13.
Front Oncol ; 13: 1280977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144523

RESUMO

Background: Identification of cancer metastasis-relevant molecular networks is desired to provide the basis for understanding and developing intervention strategies. Here we address the role of GIPC1 in the process of MACC1-driven metastasis. MACC1 is a prognostic indicator for patient metastasis formation and metastasis-free survival. MACC1 controls gene transcription, promotes motility, invasion and proliferation of colon cancer cells in vitro, and causes tumor growth and metastasis in mice. Methods: By using yeast-two-hybrid assay, mass spectrometry, co-immunoprecipitation and peptide array we analyzed GIPC1 protein binding partners, by using the MACC1 gene promoter and chromatin immunoprecipitation and electrophoretic mobility shift assay we probed for GIPC1 as transcription factor. We employed GIPC1/MACC1-manipulated cell lines for in vitro and in vivo analyses, and we probed the GIPC1/MACC1 impact using human primary colorectal cancer (CRC) tissue. Results: We identified MACC1 and its paralogue SH3BP4 as protein binding partners of the protein GIPC1, and we also demonstrated the binding of GIPC1 as transcription factor to the MACC1 promoter (TSS to -60 bp). GIPC1 knockdown reduced endogenous, but not CMV promoter-driven MACC1 expression, and diminished MACC1-induced cell migration and invasion. GIPC1 suppression reduced tumor growth and metastasis in mice intrasplenically transplanted with MACC1-overexpressing CRC cells. In human primary CRC specimens, GIPC1 correlates with MACC1 expression and is of prognostic value for metastasis formation and metastasis-free survival. Combination of MACC1 and GIPC1 expression improved patient survival prognosis, whereas SH3BP4 expression did not show any prognostic value. Conclusions: We identified an important, dual function of GIPC1 - as protein interaction partner and as transcription factor of MACC1 - for tumor progression and cancer metastasis.

14.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37227779

RESUMO

Excessive activation of cardiac fibroblasts (CFs) in response to injury provokes cardiac fibrosis, stiffness, and failure. The local mediators counterregulating this response remain unclear. Exogenous C-type natriuretic peptide (CNP) exerts antifibrotic effects in preclinical models. To unravel the role of the endogenous hormone, we generated mice with fibroblast-restricted deletion (KO) of guanylyl cyclase-B (GC-B), the cGMP-synthesizing CNP receptor. CNP activated GC-B/cGMP signaling in human and murine CFs, preventing proliferative and promigratory effects of angiotensin II (Ang II) and TGF-ß. Fibroblast-specific GC-B-KO mice showed enhanced fibrosis in response to Ang II infusions. Moreover, after 2 weeks of mild pressure overload induced by transverse aortic constriction (TAC), such KO mice had augmented cardiac fibrosis and hypertrophy, together with systolic and diastolic contractile dysfunction. This was associated with increased expression of the profibrotic genes encoding collagen I, III, and periostin. Notably, such responses to Ang II and TAC were greater in female as compared with male KO mice. Enhanced Ang II-induced CNP expression in female hearts and augmented GC-B expression and activity in female CFs may contribute to this sex disparity. The results show that paracrine CNP signaling in CFs has antifibrotic and antihypertrophic effects. The CNP/GC-B/cGMP pathway might be a target for therapies combating pathological cardiac remodeling.


Assuntos
Peptídeo Natriurético Tipo C , Remodelação Ventricular , Camundongos , Animais , Masculino , Feminino , Humanos , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/farmacologia , Vasodilatadores/farmacologia , Fibrose , Angiotensina II/farmacologia , Fibroblastos/metabolismo
15.
J Cell Biol ; 179(2): 331-40, 2007 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-17954614

RESUMO

Sensory axonal projections into the spinal cord display a highly stereotyped pattern of T- or Y-shaped axon bifurcation at the dorsal root entry zone (DREZ). Here, we provide evidence that embryonic mice with an inactive receptor guanylyl cyclase Npr2 or deficient for cyclic guanosine monophosphate-dependent protein kinase I (cGKI) lack the bifurcation of sensory axons at the DREZ, i.e., the ingrowing axon either turns rostrally or caudally. This bifurcation error is maintained to mature stages. In contrast, interstitial branching of collaterals from primary stem axons remains unaffected, indicating that bifurcation and interstitial branching are processes regulated by a distinct molecular mechanism. At a functional level, the distorted axonal branching at the DREZ is accompanied by reduced synaptic input, as revealed by patch clamp recordings of neurons in the superficial layers of the spinal cord. Hence, our data demonstrate that Npr2 and cGKI are essential constituents of the signaling pathway underlying axonal bifurcation at the DREZ and neuronal connectivity in the dorsal spinal cord.


Assuntos
Axônios/enzimologia , Guanilato Ciclase/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Medula Espinal/enzimologia , Animais , Proteínas Quinases Dependentes de GMP Cíclico/deficiência , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Eletrofisiologia , Ativação Enzimática , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Gânglios Espinais/enzimologia , Camundongos , Camundongos Mutantes , Modelos Biológicos , Mutação/genética , Nociceptores/metabolismo , Propriocepção , Medula Espinal/citologia , Raízes Nervosas Espinhais/citologia , Raízes Nervosas Espinhais/enzimologia
16.
Bioessays ; 32(11): 977-85, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20827677

RESUMO

Identification of the molecular mechanisms underlying axonal branching in vivo has begun in several neuronal systems, notably the projections formed by dorsal root ganglion (DRG) neurons or retinal ganglion cells (RGC). cGMP signalling is essential for sensory axon bifurcation at the spinal cord, whereas brain-derived neurotrophic factor (BDNF) and ephrinA signalling establish position-dependent branching of RGC axons. In the latter system, the degradation of specific signalling components, via the ubiquitin-proteasome system, may provide an additional mechanism involved in axon branching of RGC. The process of arborisation is essential for neurons to innervate multiple targets and to build topographic maps. The various forms of branching found in different types of neurons are regulated by distinct signalling pathways activated by multiple extracellular cues in addition to axonal guidance factors. These signalling cascades, together with transcriptional programs, most likely interact and trigger the polymerisation or depolymerisation of the actin and tubulin cytoskeleton to regulate branching.


Assuntos
Axônios/metabolismo , Transdução de Sinais , Animais , Cones de Crescimento/metabolismo , Humanos , Microtúbulos/metabolismo , Rede Nervosa/fisiologia , Vias Visuais
17.
Proc Natl Acad Sci U S A ; 106(39): 16847-52, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19805384

RESUMO

Neuronal circuits are shaped during development by the coordinated action of guidance factors and signals that regulate axonal branching. Unlike guidance cues, the molecules and signaling cascades that underlie axonal branching remain to be resolved. Here we show that the secreted molecule C-type natriuretic peptide (CNP) induces a cGMP signaling cascade via its receptor particulate guanylyl cyclase Npr2 which is essential for sensory axon bifurcation at the dorsal root entry zone (DREZ) of the spinal cord. In contrast, another form of sensory axon branching-collateral formation-is not affected by this pathway. We also demonstrate that cGMP signaling via the nitric oxide-stimulated soluble guanylyl cyclase system (NO-GC) is dispensable for sensory axon branching. Functionally, the bifurcation error in CNP mutant mice is maintained at mature stages and results in a reduced input on secondary neurons as detected by patch-clamp recordings.


Assuntos
Peptídeo Natriurético Tipo C/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , GMP Cíclico/metabolismo , Camundongos , Camundongos Transgênicos , Peptídeo Natriurético Tipo C/genética , Técnicas de Patch-Clamp , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Raízes Nervosas Espinhais/metabolismo
18.
Plant Soil ; 478(1-2): 177-209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277079

RESUMO

Increasing food demand coupled with climate change pose a great challenge to agricultural systems. In this review we summarize recent advances in our knowledge of how plants, together with their associated microbiota, shape rhizosphere processes. We address (molecular) mechanisms operating at the plant-microbe-soil interface and aim to link this knowledge with actual and potential avenues for intensifying agricultural systems, while at the same time reducing irrigation water, fertilizer inputs and pesticide use. Combining in-depth knowledge about above and belowground plant traits will not only significantly advance our mechanistic understanding of involved processes but also allow for more informed decisions regarding agricultural practices and plant breeding. Including belowground plant-soil-microbe interactions in our breeding efforts will help to select crops resilient to abiotic and biotic environmental stresses and ultimately enable us to produce sufficient food in a more sustainable agriculture in the upcoming decades.

19.
Br J Pharmacol ; 179(11): 2361-2377, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33939841

RESUMO

Cyclic GMP (cGMP) is a second messenger that regulates numerous physiological and pathophysiological processes. In recent years, more and more studies have uncovered multiple roles of cGMP signalling pathways in the somatosensory system. Accumulating evidence suggests that cGMP regulates different cellular processes from embryonic development through to adulthood. During embryonic development, a cGMP-dependent signalling cascade in the trunk sensory system is essential for axon bifurcation, a specific form of branching of somatosensory axons. In adulthood, various cGMP signalling pathways in distinct cell populations of sensory neurons and dorsal horn neurons in the spinal cord play an important role in the processing of pain and itch. Some of the involved enzymes might serve as a target for future therapies. In this review, we summarise the knowledge regarding cGMP-dependent signalling pathways in dorsal root ganglia and the spinal cord during embryonic development and adulthood, and the potential of targeting these pathways. LINKED ARTICLES: This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.


Assuntos
GMP Cíclico , Gânglios Espinais , Axônios/metabolismo , GMP Cíclico/metabolismo , Feminino , Gânglios Espinais/metabolismo , Humanos , Gravidez , Células Receptoras Sensoriais/metabolismo , Medula Espinal/metabolismo
20.
J Neurosci ; 30(8): 2897-910, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20181587

RESUMO

The coxsackievirus-adenovirus receptor (CAR) is a member of the Ig superfamily strongly expressed in the developing nervous system. Our histological investigations during development reveal an initial uniform distribution of CAR on all neural cells with a concentration on membranes that face the margins of the nervous system (e.g., the basal laminae and the ventricular side). At more advanced stages, CAR becomes downregulated and restricted to specific regions including areas rich in axonal and dendritic surfaces. To study the function of CAR on neural cells, we used the fiber knob of the adenovirus, extracellular CAR domains, blocking antibodies to CAR, as well as CAR-deficient neural cells. Blocking antibodies were found to inhibit neurite extension in retina organ and retinal explant cultures, whereas the application of the recombinant fiber knob of the adenovirus subtype Ad2 or extracellular CAR domains promoted neurite extension and adhesion to extracellular matrices. We observed a promiscuous interaction of CAR with extracellular matrix glycoproteins, which was deduced from analytical ultracentrifugation experiments, affinity chromatography, and adhesion assays. The membrane proximal Ig domain of CAR, termed D2, was found to bind to a fibronectin fragment, including the heparin-binding domain 2, which promotes neurite extension of wild type, but not of CAR-deficient neural cells. In contrast to heterophilic interactions, homophilic association of CAR involves both Ig domains, as was revealed by ultracentrifugation, chemical cross-linking, and adhesion studies. The results of these functional and binding studies are correlated to a U-shaped homodimer of the complete extracellular domains of CAR detected by x-ray crystallography.


Assuntos
Diferenciação Celular/genética , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurogênese/genética , Neurônios/metabolismo , Receptores Virais/metabolismo , Animais , Anticorpos Bloqueadores/farmacologia , Células CHO , Adesão Celular/genética , Células Cultivadas , Sistema Nervoso Central/citologia , Embrião de Galinha , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Cricetinae , Cricetulus , Cristalografia por Raios X , Dimerização , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Células NIH 3T3 , Neuritos/metabolismo , Neuritos/ultraestrutura , Neurônios/citologia , Técnicas de Cultura de Órgãos , Estrutura Terciária de Proteína/fisiologia , Receptores Virais/química , Receptores Virais/genética , Retina/citologia , Retina/embriologia , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa