Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(17): 3653-3665, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38623629

RESUMO

Deformable colloids and macromolecules adsorb at interfaces as they decrease the interfacial energy between the two media. The deformability, or softness, of these particles plays a pivotal role in the properties of the interface. In this study, we employ a comprehensive in situ approach, combining neutron reflectometry with molecular dynamics simulations, to thoroughly examine the profound influence of softness on the structure of microgel Langmuir monolayers under compression. Lateral compression of both hard and soft microgel particle monolayers induces substantial structural alterations, leading to an amplified protrusion of the microgels into the aqueous phase. However, a critical distinction emerges: hard microgels are pushed away from the interface, in stark contrast to the soft ones, which remain firmly anchored to it. Concurrently, on the air-exposed side of the monolayer, lateral compression induces a flattening of the surface of the hard monolayer. This phenomenon is not observed for the soft particles as the monolayer is already extremely flat even in the absence of compression. These findings significantly advance our understanding of the key role of softness on both the equilibrium phase behavior of the monolayer and its effect when soft colloids are used as stabilizers of responsive interfaces and emulsions.

2.
Phys Rev Lett ; 131(25): 258202, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181345

RESUMO

In situ interfacial rheology and numerical simulations are used to investigate microgel monolayers in a wide range of packing fractions, ζ_{2D}. The heterogeneous particle compressibility determines two flow regimes characterized by distinct master curves. To mimic the microgel architecture and reproduce experiments, an interaction potential combining a soft shoulder with the Hertzian model is introduced. In contrast to bulk conditions, the elastic moduli vary nonmonotonically with ζ_{2D} at the interface, confirming long-sought predictions of reentrant behavior for Hertzian-like systems.

3.
Langmuir ; 39(22): 7530-7538, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220302

RESUMO

The softness of microgels depends on many aspects, such as particle characteristic lengths, sample concentration, chemical composition of the sample, and elastic moduli of the particle. Here, the response to crowding of ionic microgels is studied. Charged and uncharged ionic microgels are studied in concentrated suspensions of both neutral and ionic microgels with the same swollen size. The combination of small-angle X-ray and neutron scattering with contrast variation allows us to probe both the particle-to-particle arrangement and the response of individual ionic microgels to crowding. When the ionic microgels are uncharged, initial isotropic deswelling followed by faceting is observed. Therefore, the ionizable groups in the polymeric network do not affect the response of the ionic microgel to crowding, which is similar to what has been reported for neutral microgels. In contrast, the kind of microgels composing the matrix plays a key role once the ionic microgels are charged. If the matrix is composed of neutral microgels, a pronounced faceting and negligible deswelling is observed. When only charged ionic microgels are present in the suspension, isotropic deswelling without faceting is dominant.

4.
Langmuir ; 38(17): 5063-5080, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34586813

RESUMO

Anisotropic, submicrometer-sized particles are versatile systems providing interesting features in creating ordering in two-dimensional systems. Combining hard ellipsoids with a soft shell further enhances the opportunities to trigger and control order and alignment. In this work, we report rich 2D phase behavior and show how softness affects the ordering of anisotropic particles at fluid oil-water interfaces. Three different core-shell systems were synthesized such that they have the same elliptical hematite-silica core but differ with respect to thickness and stiffness of the soft microgel shell. Compression isotherms, the shape of individual core-shell microgels, and their 2D order at a decane-water interface are investigated by means of the Langmuir-Blodgett technique combined with ex-situ atomic force microscopy (AFM) imaging as well as dissipative particle dynamics (DPD) simulations. We show how the softness, size, and anisotropy of the microgel shell affect the side-to-side vs tip-to-tip ordering of anisotropic hybrid microgels as well as the alignment with respect to the direction of compression in the Langmuir trough. A large, soft microgel shell leads to an ordered structure with tip-to-tip alignment directed perpendicular to the direction of compression. In contrast, a thin and harder microgel shell leads to side-to-side ordering orientated parallel to the compression direction. In addition, the thin and harder microgel shell induces clustering of the microgels in the dilute state, indicating the presence of strong capillary interactions. Our findings highlight the relevance of softness for the complex ordering of anisotropic hybrid microgels at interfaces.

5.
Langmuir ; 36(37): 11079-11093, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32845643

RESUMO

The role of electrostatics on the interfacial properties of polyelectrolyte microgels has been discussed controversially in the literature. It is not yet clear if, or how, Coulomb interactions affect their behavior under interfacial confinement. In this work, we combine compression isotherms, atomic force microscopy imaging, and computer simulations to further investigate the behavior of pH-responsive microgels at oil-water interfaces. At low compression, charged microgels can be compressed more than uncharged microgels. The in-plane effective area of charged microgels is found to be smaller in comparison to uncharged ones. Thus, the compressibility is governed by in-plane interactions of the microgels with the interface. At high compression, however, charged microgels are less compressible than uncharged microgels. Microgel fractions located in the aqueous phase interact earlier for charged than for uncharged microgels because of their different swelling perpendicular to the interface. Therefore, the compressibility at high compression is controlled by out-of-plane interactions. In addition, the size of the investigated microgels plays a pivotal role. The charge-dependent difference in compressibility at low compression is only observed for small but not for large microgels, while the behavior at high compression does not depend on the size. Our results highlight the complex nature of soft polymer microgels as compared to rigid colloidal particles. We clearly demonstrate that electrostatic interactions affect the interfacial properties of polyelectrolyte microgels.

6.
Phys Chem Chem Phys ; 19(7): 5102-5112, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28138660

RESUMO

Gold nanoparticles (GNPs) have UV-visible absorption spectra that are highly sensitive to their local environment due to their surface plasmon resonance (SPR). Furthermore, GNPs are able to quench the fluorescence of suitable dyes depending on the GNP-dye separation. Both of these features have led to the use of GNPs as spectroscopic rulers. In this study we sought to use GNPs as spectroscopic probes to investigate the local structural changes associated with the macroscopic pH-triggered swelling/de-swelling transitions of a pH-responsive hydrogel. The hydrogel used in this study comprised covalently inter-linked pH-responsive poly(ethylacrylate-co-methacrylic acid-co-divinyl benzene) microgel particles (MGs). MGs are crosslinked polymer colloids that swell when the pH approaches the pKa of the constituent polymer. The interlinked MG hydrogels are termed doubly crosslinked microgels (DX MGs) and are a new family of hydrogels. They had polymer volume fractions (ϕp) that strongly decreased as the pH increased. UV-visible spectra showed that the wavelength of the SPR absorption (λmax) for the DX MG/GNP gels was pH-responsive. A linear relationship was found between λmax and ϕp for ϕp values up to ∼0.80. The inclusion of Rhodamine 6G within the DX MG/GNP hydrogels resulted in metal-induced fluorescence quenching which was studied using photoluminescence (PL) spectroscopy. The extent of quenching was pH-dependent and was also proportional to ϕp. The results of the study showed that the pH-triggered changes of the nanoscale and macroscopic swelling for the DX MGs were similar and imply that affine swelling occurred, which is a new observation. The data suggest that UV-visible or PL spectroscopy could be used to study the swelling of pH-responsive hydrogels containing GNPs remotely.

7.
Nat Commun ; 13(1): 3744, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768399

RESUMO

The structural characterization of microgels at interfaces is fundamental to understand both their 2D phase behavior and their role as stabilizers that enable emulsions to be broken on demand. However, this characterization is usually limited by available experimental techniques, which do not allow a direct investigation at interfaces. To overcome this difficulty, here we employ neutron reflectometry, which allows us to probe the structure and responsiveness of the microgels in-situ at the air-water interface. We investigate two types of microgels with different cross-link density, thus having different softness and deformability, both below and above their volume phase transition temperature, by combining experiments with computer simulations of in silico synthesized microgels. We find that temperature only affects the portion of microgels in water, while the strongest effect of the microgels softness is observed in their ability to protrude into the air. In particular, standard microgels have an apparent contact angle of few degrees, while ultra-low cross-linked microgels form a flat polymeric layer with zero contact angle. Altogether, this study provides an in-depth microscopic description of how different microgel architectures affect their arrangements at interfaces, and will be the foundation for a better understanding of their phase behavior and assembly.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa