RESUMO
The Great Pacific Garbage Patch, a significant collection of plastic introduced by human activities, provides an ideal environment to study bacterial lifestyles on plastic substrates. We proposed that bacteria colonizing the floating plastic debris would develop strategies to deal with the ultraviolet-exposed substrate, such as the production of antioxidant pigments. We observed a variety of pigmentation in 67 strains that were directly cultivated from plastic pieces sampled from the Garbage Patch. The genomic analysis of four representative strains, each distinct in taxonomy, revealed multiple pathways for carotenoid production. These pathways include those that produce less common carotenoids and a cluster of photosynthetic genes. This cluster appears to originate from a potentially new species of the Rhodobacteraceae family. This represents the first report of an aerobic anoxygenic photoheterotrophic bacterium from plastic biofilms. Spectral analysis showed that the bacteria actively produce carotenoids, such as beta-carotene and beta-cryptoxanthin, and bacteriochlorophyll a. Furthermore, we discovered that the genetic ability to synthesize carotenoids is more common in plastic biofilms than in the surrounding water communities. Our findings suggest that plastic biofilms could be an overlooked source of bacteria-produced carotenoids, including rare forms. It also suggests that photoreactive molecules might play a crucial role in bacterial biofilm communities in surface water.
Assuntos
Biofilmes , Carotenoides , Pigmentos Biológicos , Plásticos , Carotenoides/metabolismo , Biofilmes/crescimento & desenvolvimento , Pigmentos Biológicos/metabolismo , Plásticos/metabolismo , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Rhodobacteraceae/classificação , Filogenia , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Oceano PacíficoRESUMO
Environmental monitoring involves the quantification of microscopic cells and particles such as algae, plant cells, pollen, or fungal spores. Traditional methods using conventional microscopy require expert knowledge, are time-intensive and not well-suited for automated high throughput. Multispectral imaging flow cytometry (MIFC) allows measurement of up to 5000 particles per second from a fluid suspension and can simultaneously capture up to 12 images of every single particle for brightfield and different spectral ranges, with up to 60x magnification. The high throughput of MIFC has high potential for increasing the amount and accuracy of environmental monitoring, such as for plant-pollinator interactions, fossil samples, air, water or food quality that currently rely on manual microscopic methods. Automated recognition of particles and cells is also possible, when MIFC is combined with deep-learning computational techniques. Furthermore, various fluorescence dyes can be used to stain specific parts of the cell to highlight physiological and chemical features including: vitality of pollen or algae, allergen content of individual pollen, surface chemical composition (carbohydrate coating) of cells, DNA- or enzyme-activity staining. Here, we outline the great potential for MIFC in environmental research for a variety of research fields and focal organisms. In addition, we provide best practice recommendations.
Assuntos
Monitoramento Ambiental , Microscopia , Alérgenos , Citometria de Fluxo/métodos , Coloração e RotulagemRESUMO
Plastics undergo successive fragmentation and chemical leaching steps in the environment due to weathering processes such as photo-oxidation. Here, we report the effects of leachates from UV-irradiated microplastics towards the chlorophyte Scenedesmus vacuolatus. The microplastics tested were derived from an additive-containing electronic waste (EW) and a computer keyboard (KB) as well as commercial virgin polymers with low additive content, including polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). Whereas leachates from additive-containing EW and KB induced severe effects, the leachates from virgin PET, PP, and PS did not show substantial adverse effects in our autotrophic test system. Leachates from PE reduced algae biomass, cell growth, and photosynthetic activity. Experimental data were consistent with predicted effect concentrations based on the ionization-corrected liposome/water distribution ratios (Dlip/w) of polymer degradation products of PE (mono- and dicarboxylic acids), indicating that leachates from weathering PE were mainly baseline toxic. This study provides insight into algae toxicity elicited by leachates from UV-weathered microplastics of different origin, complementing the current particle- vs. chemical-focused research towards the toxicity of plastics and their leachates.
Assuntos
Microalgas/efeitos dos fármacos , Microplásticos/toxicidade , Scenedesmus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Resíduo Eletrônico , Microplásticos/química , Microplásticos/efeitos da radiação , Polietileno/toxicidade , Polipropilenos/toxicidade , Poliestirenos/toxicidade , Raios UltravioletaRESUMO
In the context of environmental plastic pollution, it is still under debate if and how the "plastisphere", a plastic-specific microbial community, emerges. In this study, we tested the hypothesis that the first conditioning film of dissolved organic matter (DOM) sorbs selectively to polymer substrates and that microbial attachment is governed in a substrate-dependent manner. We investigated the adsorption of stream water-derived DOM to polyethylene terephthalate (PET), polystyrene (PS), and glass (as control) including UV-weathered surfaces by Fourier-transform ion cyclotron mass spectrometry. Generally, the saturated, high-molecular mass and thus more hydrophobic fraction of the original stream water DOM preferentially adsorbed to the substrates. The UV-weathered polymers adsorbed more polar, hydrophilic OM as compared to the dark controls. The amplicon sequencing data of the initial microbial colonization process revealed a tendency of substrate specificity for biofilm attachment after 24 h and a clear convergence of the communities after 72 h of incubation. Conclusively, the adsorbed OM layer developed depending on the materials' surface properties and increased the water contact angles, indicating higher surface hydrophobicity as compared to pristine surfaces. This study improves our understanding of molecular and biological interactions at the polymer/water interface that are relevant to understand the ecological impact of plastic pollution on a community level.
Assuntos
Biofilmes , Plásticos , Adsorção , Polímeros , RiosRESUMO
We described in 2017 how weathering plastic litter in the marine environment fulfils two of three criteria to impose a planetary boundary threat related to "chemical pollution and the release of novel entities": (1) planetary-scale exposure, which (2) is not readily reversible. Whether marine plastics meet the third criterion, (3) eliciting a disruptive impact on vital earth system processes, was uncertain. Since then, several important discoveries have been made to motivate a re-evaluation. A key issue is if weathering macroplastics, microplastics, nanoplastics, and their leachates have an inherently higher potential to elicit adverse effects than natural particles of the same size. We summarize novel findings related to weathering plastic in the context of the planetary boundary threat criteria that demonstrate (1) increasing exposure, (2) fate processes leading to poorly reversible pollution, and (3) (eco)toxicological hazards and their thresholds. We provide evidence that the third criterion could be fulfilled for weathering plastics in sensitive environments and therefore conclude that weathering plastics pose a planetary boundary threat. We suggest future research priorities to better understand (eco)toxicological hazards modulated by increasing exposure and continuous weathering processes, to better parametrize the planetary boundary threshold for plastic pollution.
Assuntos
Plásticos , Poluentes Químicos da Água , Planeta Terra , Monitoramento Ambiental , Poluição Ambiental , Microplásticos , Poluentes Químicos da Água/análise , Tempo (Meteorologia)RESUMO
Omics approaches (e.g., transcriptomics, metabolomics) are promising for ecological risk assessment (ERA) since they provide mechanistic information and early warning signals. A crucial step in the analysis of omics data is the modeling of concentration-dependency which may have different trends including monotonic (e.g., linear, exponential) or biphasic (e.g., U shape, bell shape) forms. The diversity of responses raises challenges concerning detection and modeling of significant responses and effect concentration (EC) derivation. Furthermore, handling high-throughput data sets is time-consuming and requires effective and automated processing routines. Thus, we developed an open source tool (DRomics, available as an R-package and as a web-based service) which, after elimination of molecular responses (e.g., gene expressions from microarrays) with no concentration-dependency and/or high variability, identifies the best model for concentration-response curve description. Subsequently, an EC (e.g., a benchmark dose) is estimated from each curve, and curves are classified based on their model parameters. This tool is especially dedicated to manage data obtained from an experimental design favoring a great number of tested doses rather than a great number of replicates and also to handle properly monotonic and biphasic trends. The tool finally provides restitution for a table of results that can be directly used to perform ERA approaches.
Assuntos
Ecologia , Metabolômica , Projetos de Pesquisa , Medição de RiscoRESUMO
A major goal of ecotoxicology is the prediction of adverse outcomes for populations from sensitive and early physiological responses. A snapshot of the physiological state of an organism can be provided by metabolic fingerprints. However, to inform chemical risk assessment, multivariate metabolic fingerprints need to be converted to readable end points suitable for effect estimation and comparison. The concentration- and time-dependent responsiveness of metabolic fingerprints to the PS-II inhibitor isoproturon was investigated by use of a Myriophyllum spicatum bioassay. Hydrophilic and lipophilic leaf extracts were analyzed with gas chromatography-mass spectrometry (GC-MS) and preprocessed with XCMS. Metabolic changes were aggregated in the quantitative metabolic effect level index (MELI), allowing effect estimation from Hill-based concentration-response models. Hereby, the most sensitive response on the concentration scale was revealed by the hydrophilic MELI, followed by photosynthetic efficiency and, 1 order of magnitude higher, by the lipophilic MELI and shoot length change. In the hydrophilic MELI, 50% change compares to 30% inhibition of photosynthetic efficiency and 10% inhibition of dry weight change, indicating effect development on different response levels. In conclusion, aggregated metabolic fingerprints provide quantitative estimates and span a broad response spectrum, potentially valuable for establishing adverse outcome pathways of chemicals in environmental risk assessment.
Assuntos
Ecotoxicologia , Magnoliopsida/metabolismo , Metaboloma , Metabolômica/métodos , Magnoliopsida/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Modelos Teóricos , Análise Multivariada , Compostos de Fenilureia/farmacologia , Fotossíntese/efeitos dos fármacos , Análise de Componente PrincipalRESUMO
Aquatic ecosystems are often contaminated with large numbers of chemicals, which cannot be sufficiently addressed by chemical target analyses. Effect-directed analysis (EDA) enables the identification of toxicants in complex contaminated environmental samples. This study suggests pollution-induced community tolerance (PICT) as a confirmation tool for EDA to identify contaminants which actually impact on local communities. The effects of three phytotoxic compounds local periphyton communities, cultivated at a reference (R-site) and a polluted site (P-site), were assessed to confirm the findings of a former EDA study on sediments. The sensitivities of R- and P-communities to prometryn, tributyltin (TBT) and N-phenyl-2-naphthylamine (PNA) were quantified in short-term toxicity tests and exposure concentrations were determined. Prometryn and PNA concentrations were significantly higher at the P-site, whereas TBT concentrations were in the same range at both sites. Periphyton communities differed in biomass, but algal class composition and diatom diversity were similar. Community tolerance of P-communities was significantly enhanced for prometryn, but not for PNA and TBT, confirming site-specific effects on local periphyton for prometryn only. Thus, PICT enables in situ effect confirmation of phytotoxic compounds at the community level and seems to be suitable to support confirmation and enhance ecological realism of EDA.
Assuntos
Ecossistema , Monitoramento Ambiental , Substâncias Perigosas/análise , Poluentes Químicos da Água/análise , Poluição da Água/análise , 2-Naftilamina/análogos & derivados , 2-Naftilamina/toxicidade , Diatomáceas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Testes de Toxicidade , Compostos de Trialquitina/toxicidadeRESUMO
Photodegradation of plastic consumer products is known to accelerate weathering and facilitate the release of chemicals and plastic particles into the aquatic environment. However, these processes are complex. In our presented pilot study, eight plastic consumer products were leached in distilled water under strong ultraviolet (UV) light simulating eight months of Central European climate and compared to their respective dark controls (DCs). The leachates and formed plastic particles were exploratorily characterized using a range of chemical analytical tools to describe degradation and leaching processes. These techniques covered (a) microplastic analysis, showing substantial liberation of plastic particles further increased under UV exposure, (b) non-targeted mass spectrometric characterization of the leachates, revealing several hundreds of chemical features with typically only minor agreement between the UV exposure and the corresponding DCs, (c) target analysis of 71 organic analytes, of which 15 could be detected in at least one sample, and (d) metal(loid) analysis, which revealed substantial release of toxic metal(loid)s further enhanced under UV exposure. A data comparison with the US-EPA's ToxVal and ToxCast databases showed that the detected metals and organic additives might pose substantial health and environmental concerns, requiring further study and comprehensive impact assessments.
RESUMO
Fertilizers, pesticides and global warming are threatening freshwater aquatic ecosystems. Most of these are shallow ponds or slow-flowing streams or ditches dominated by submerged macrophytes, periphyton or phytoplankton. Regime shifts between the dominance of these primary producers can occur along a gradient of nutrient loading, possibly triggered by specific disturbances influencing their competitive interactions. However, phytoplankton dominance is less desirable due to lower biodiversity and poorer ecosystem function and services. In this study, we combined a microcosm experiment with a process-based model to test three hypotheses: 1) agricultural run-off (ARO), consisting of nitrate and a mixture of organic pesticides and copper, differentially affects primary producers and enhances the risk of regime shifts, 2) warming increases the risk of an ARO-induced regime shift to phytoplankton dominance and 3) custom-tailored process-based models support mechanistic understanding of experimental results through scenario comparison. Experimentally exposing primary producers to a gradient of nitrate and pesticides at 22°C and 26°C supported the first two hypotheses. ARO had direct negative effects on macrophytes, while phytoplankton gained from warming and indirect effects of ARO like a reduction in the competitive pressure exerted by other groups. We used the process-based model to test eight different scenarios. The best qualitative fit between modeled and observed responses was reached only when taking community adaptation and organism acclimation into account. Our results highlight the importance of considering such processes when attempting to predict the effects of multiple stressors on natural ecosystems.
RESUMO
The advent of new genomic techniques has raised expectations that central questions of mixture toxicology such as for mechanisms of low dose interactions can now be answered. This review provides an overview on experimental studies from the past decade that address diagnostic and/or mechanistic questions regarding the combined effects of chemical mixtures using toxicogenomic techniques. From 2002 to 2011, 41 studies were published with a focus on mixture toxicity assessment. Primarily multiplexed quantification of gene transcripts was performed, though metabolomic and proteomic analysis of joint exposures have also been undertaken. It is now standard to explicitly state criteria for selecting concentrations and provide insight into data transformation and statistical treatment with respect to minimizing sources of undue variability. Bioinformatic analysis of toxicogenomic data, by contrast, is still a field with diverse and rapidly evolving tools. The reported combined effect assessments are discussed in the light of established toxicological dose-response and mixture toxicity models. Receptor-based assays seem to be the most advanced toward establishing quantitative relationships between exposure and biological responses. Often transcriptomic responses are discussed based on the presence or absence of signals, where the interpretation may remain ambiguous due to methodological problems. The majority of mixture studies design their studies to compare the recorded mixture outcome against responses for individual components only. This stands in stark contrast to our existing understanding of joint biological activity at the levels of chemical target interactions and apical combined effects. By joining established mixture effect models with toxicokinetic and -dynamic thinking, we suggest a conceptual framework that may help to overcome the current limitation of providing mainly anecdotal evidence on mixture effects. To achieve this we suggest (i) to design studies to establish quantitative relationships between dose and time dependency of responses and (ii) to adopt mixture toxicity models. Moreover, (iii) utilization of novel bioinformatic tools and (iv) stress response concepts could be productive to translate multiple responses into hypotheses on the relationships between general stress and specific toxicity reactions of organisms.
Assuntos
Misturas Complexas/toxicidade , Toxicogenética/métodos , Animais , Humanos , Modelos BiológicosRESUMO
Chemical pollution is a major concern for freshwater ecosystems, but the impact and mechanisms of chemical stressors on communities are barely understood. Pollution stress beyond natural homeostatic capacities can trigger succession of tolerant species within a community, enhancing the overall community tolerance. This process was operationalized in the Pollution-Induced Community Tolerance (PICT) concept and applied in many case studies, however, the molecular mechanisms of community tolerance and implications for ecological functions remain largely unexplored. Our study aimed to demonstrate that 1) community metabolomics can unravel potential mechanisms of PICT in periphyton and 2) induced tolerance helps to maintain primary production under re-occuring pollution. To this end, we grew periphyton for 5 weeks with and without the model herbicide diuron in microcosms, quantified PICT, and determined the related metabolic fingerprint of periphyton by GC-MS-based untargeted metabolomics. Further, we explored the autotrophic community based on pigment composition and functional parameters including photosynthesis and gross primary production. Chronic diuron exposure resulted in a shift in pigment composition, higher community tolerance and an individual metabolic fingerprint in the contaminated communities. Opposing responses of selected metabolites during a short-term exposure indicated differences in diuron pre-adaptation in the different communities. Metabolites (threonic acid and two sugar acid lactones) were found to be related to tolerance development, suggesting that ascorbate metabolism was induced in contaminated communities. Despite these compensating mechanism, contaminated communities were compromised in production-to-respiration ratio and biomass. A ranking of sensitivity thresholds of different biological endpoints revealed that metabolites were less sensitive than photosynthetic parameters, which reflects the mode-of-action of the herbicide. In conclusion, we could demonstrate that community metabolomics is able to unravel complex biochemical changes and allows mechanistic insights into community tolerance. Moreover, we were able to show that induced community tolerance was insufficient to safeguard functions like primary production.
Assuntos
Herbicidas , Perifíton , Poluentes Químicos da Água , Diurona , Ecossistema , Herbicidas/toxicidade , Metabolômica , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
In aquatic ecosystems, excessive nutrient loading is a global problem that can induce regime shifts from macrophyte- to phytoplankton-dominated states with severe consequences for ecosystem functions. Most agricultural landscapes are sites of nutrient and pesticide loading, which can interact with other stressors (e.g., warming) in additive, antagonistic, synergistic or reversed forms. The effects of multiple stressors on the resilience of macrophyte-dominated states and on critical thresholds for regime shifts are, however, unknown. We test the effects of individual and combined stressors of warming, nitrate, and various pesticides typically found in agricultural run-off (ARO) on the growth of macrophytes, periphyton, and phytoplankton in microcosms. We applied a one-level replicated design to test whether ARO induces a regime shift and a multifactorial dose-response design to model stressor thresholds and disentangle stressor interactions along a gradient. The individual stressors did not induce a regime shift, but the full ARO did. Nitrate and pesticides acted synergistically, inducing a shift with increasing phytoplankton biomass and decreasing macrophyte biomass. Warming amplified this effect and lowered critical thresholds for regime shifts. Shallow aquatic ecosystems in agricultural landscapes affected by global warming thus increasingly risk shifting to a turbid, phytoplankton-dominated state, and negatively impacting ecosystem service provisioning. Multiple stressor interactions must be considered when defining safe operating spaces for aquatic systems.
Assuntos
Ecossistema , Praguicidas , Biomassa , Lagos , Nitratos , Praguicidas/toxicidade , FitoplânctonRESUMO
Shallow lakes provide essential ecological and environmental services but are exposed to multiple stressors, including agricultural runoff (ARO) and climate warming, which may act on different target receptors disrupting their normal functioning. We performed a microcosm experiment to determine the individual and combined effects of three stressors-pesticides, nitrate and climate warming-on two trophic levels representative of communities found in shallow lakes. We used three submerged macrophyte species (Myriophyllum spicatum, Potamogeton perfoliatus, Elodea nuttallii), eight benthic or pelagic microalgal species and three primary consumer species (Daphnia magna, Lymnaea stagnalis, Dreissena polymorpha) with different feeding preferences for benthic and pelagic primary producers. Eight different treatments consisted of a control, only nitrate, a pesticide cocktail, and a combination of nitrate and pesticides representing ARO, each replicated at ambient temperature and +3.5°C, mimicking climate warming. Pesticides negatively affected all functional groups except phytoplankton, which increased. Warming and nitrate modified these effects. Strong but opposite pesticide and warming effects on Myriophyllum drove the response of the total macrophyte biomass. Nitrate significantly suppressed Myriophyllum final biomass, but not overall macrophyte and microalgal biomass. Nitrate and pesticides in combination caused a macrophyte decline, and the system tipped towards phytoplankton dominance. Strong synergistic or even reversed stressor interaction effects were observed for macrophytes or periphyton. We emphasize the need for more complex community- and ecosystem-level studies incorporating multiple stressor scenarios to define safe operating spaces.
Assuntos
Cadeia Alimentar , Praguicidas , Biomassa , Ecossistema , Lagos , Nitratos , FitoplânctonRESUMO
Aquatic ecosystems are exposed to multiple stressors such as agricultural run-off (ARO) and climate-change related increase of temperature. We aimed to determine how ARO and the frequency of its input can affect shallow lake ecosystems through direct and indirect effects on primary producers and primary consumers, and whether warming can mitigate or reinforce the impact of ARO. We performed a set of microcosm experiments simulating ARO using a cocktail of three organic pesticides (terbuthylazine, tebuconazole, pirimicarb), copper and nitrate. Two experiments were performed to determine the direct effect of ARO on primary producers (submerged macrophytes, periphyton and phytoplankton) and on the grazing snail Lymnaea stagnalis, respectively. Three different ARO concentrations added as single doses or as multiple pulses at two different temperatures (22°C and 26°C) were applied. In a third experiment, primary producers and consumers were exposed together to allow trophic interactions. When functional groups were exposed alone, ARO had a direct positive effect on phytoplankton and a strong negative effect on L. stagnalis. When exposed together, primary producer responses were contrasting, as the negative effect of ARO on grazers led to an indirect positive effect on periphyton. Periphyton in turn exerted a strong control on phytoplankton, leading to an indirect negative effect of ARO on phytoplankton. Macrophytes showed little response to the stressors. Multiple pulse exposure increased the effect of ARO on L. stagnalis and periphyton when compared with the same quantity of ARO added as a single dose. The increase in temperature had only limited effects. Our results highlight the importance of indirect effects of stressors, here mediated by grazers and periphyton, and the frequency of the ARO input in aquatic ecosystems.
Assuntos
Ecossistema , Aquecimento Global , Agricultura , Animais , Lagos , FitoplânctonRESUMO
Despite elaborate regulation of agricultural pesticides, their occurrence in non-target areas has been linked to adverse ecological effects on insects in several field investigations. Their quantitative role in contributing to the biodiversity crisis is, however, still not known. In a large-scale study across 101 sites of small lowland streams in Central Europe, Germany we revealed that 83% of agricultural streams did not meet the pesticide-related ecological targets. For the first time we identified that agricultural nonpoint-source pesticide pollution was the major driver in reducing vulnerable insect populations in aquatic invertebrate communities, exceeding the relevance of other anthropogenic stressors such as poor hydro-morphological structure and nutrients. We identified that the current authorisation of pesticides, which aims to prevent unacceptable adverse effects, underestimates the actual ecological risk as (i) measured pesticide concentrations exceeded current regulatory acceptable concentrations in 81% of the agricultural streams investigated, (ii) for several pesticides the inertia of the authorisation process impedes the incorporation of new scientific knowledge and (iii) existing thresholds of invertebrate toxicity drivers are not protective by a factor of 5.3 to 40. To provide adequate environmental quality objectives, the authorisation process needs to include monitoring-derived information on pesticide effects at the ecosystem level. Here, we derive such thresholds that ensure a protection of the invertebrate stream community.
Assuntos
Praguicidas , Poluentes Químicos da Água , Agricultura , Animais , Ecossistema , Monitoramento Ambiental , Europa (Continente) , Alemanha , Insetos , Invertebrados , Praguicidas/análise , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Meeting ecological and water quality standards in lotic ecosystems is often failed due to multiple stressors. However, disentangling stressor effects and identifying relevant stressor-effect-relationships in complex environmental settings remain major challenges. By combining state-of-the-art methods from ecotoxicology and aquatic ecosystem analysis, we aimed here to disentangle the effects of multiple chemical and non-chemical stressors along a longitudinal land use gradient in a third-order river in Germany. We distinguished and evaluated four dominant stressor categories along this gradient: (1) Hydromorphological alterations: Flow diversity and substrate diversity correlated with the EU-Water Framework Directive based indicators for the quality element macroinvertebrates, which deteriorated at the transition from near-natural reference sites to urban sites. (2) Elevated nutrient levels and eutrophication: Low to moderate nutrient concentrations together with complete canopy cover at the reference sites correlated with low densities of benthic algae (biofilms). We found no more systematic relation of algal density with nutrient concentrations at the downstream sites, suggesting that limiting concentrations are exceeded already at moderate nutrient concentrations and reduced shading by riparian vegetation. (3) Elevated organic matter levels: Wastewater treatment plants (WWTP) and stormwater drainage systems were the primary sources of bioavailable dissolved organic carbon. Consequently, planktonic bacterial production and especially extracellular enzyme activity increased downstream of those effluents showing local peaks. (4) Micropollutants and toxicity-related stress: WWTPs were the predominant source of toxic stress, resulting in a rapid increase of the toxicity for invertebrates and algae with only one order of magnitude below the acute toxic levels. This toxicity correlates negatively with the contribution of invertebrate species being sensitive towards pesticides (SPEARpesticides index), probably contributing to the loss of biodiversity recorded in response to WWTP effluents. Our longitudinal approach highlights the potential of coordinated community efforts in supplementing established monitoring methods to tackle the complex phenomenon of multiple stress.
RESUMO
In situ experiments are an important tool within ecotoxicological research but there is a lack of suitable methodologies especially for freshwater invertebrate species. Within this study, a novel in situ methodology with Potamopyrgus antipodarum was developed. Snails were inserted into cages, made of Plexiglas measuring 7 × 9 × 7 cm(3) and fixed with stainless steel pins into the sediment at the relevant sampling sites. During the experiment physico-chemical properties of the water and concentrations of metals, PAHs and PCBs were measured in the sediment. The growth and survival of the snails was not affected, but the reproduction increased significantly at one of the most polluted sites. The increase in reproduction was neither correlated with physico-chemical parameters, nor with the concentrations of the different compounds, but maybe related to certain groups of estrogenic compounds. The study demonstrates the excellent applicability of this novel in situ test.
Assuntos
Ecossistema , Disruptores Endócrinos/toxicidade , Água Doce/química , Gastrópodes/efeitos dos fármacos , Sedimentos Geológicos/química , Metais Pesados/toxicidade , Análise de Variância , Animais , Bélgica , Carbono/análise , Cromatografia Líquida , Disruptores Endócrinos/análise , Gastrópodes/fisiologia , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Metais Pesados/análise , Reprodução/efeitos dos fármacos , Rios , Estatísticas não ParamétricasRESUMO
Two injectable reactive and sorption-active particle types were evaluated for their applicability in permeable reaction zones for in-situ removal of herbicides ("nanoremediation"). As model substances, atrazine and bromacil were used, two herbicides frequently occurring in groundwater. In order to provide recommendations for best use, particle performance was assessed regarding herbicide degradation and detoxification. For chemical reduction, Carbo-Iron® was studied, a composite material consisting of zerovalent iron and colloidal activated carbon. Carbo-Iron reduced bromacil with increased activity compared to nanoscale zerovalent iron (nZVI). The sole reaction product, 3-sec-butyl-6-methyluracil, showed 500-fold increase in half-maximal-effect concentration (EC50) towards the chlorophyte Scendesmus vacuolatus compared to the parent compound. The detoxification based on dehalogenation confirmed the dependency of the specific mode-of-action on the carbon-halide bond. For atrazine, neither nZVI nor Carbo-Iron showed significant degradation under the conditions applied. As novel subsurface treatment option, Trap-Ox® zeolite FeBEA35 was studied for generation of in-situ permeable oxidation barriers. Both adsorbed atrazine and bromacil underwent fast unselective oxidation. The transformation products of the Fenton-like reaction were identified, and oxidation pathways derived. For atrazine, a 300-fold increase in EC50 for S. vacuolatus was found over the duration of the reaction, and a loss of phytotoxicity to non-detectable levels for bromacil.
Assuntos
Atrazina/química , Bromouracila/análogos & derivados , Carbono/química , Herbicidas/química , Ferro/química , Nanopartículas/química , Poluentes Químicos da Água/química , Zeolitas/química , Adsorção , Atrazina/toxicidade , Bromouracila/química , Bromouracila/toxicidade , Recuperação e Remediação Ambiental , Estudos de Viabilidade , Água Subterrânea/química , Herbicidas/toxicidade , Oxirredução , Scenedesmus/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidadeRESUMO
In aquatic ecosystems, the biocide triclosan represents a hazard for the non-target microalgae. So far, algal responses were mainly investigated at apical levels hampering the acquisition of a holistic view on primary, adaptive, and compensatory stress responses. We assessed responses of the chlorophyte Scenedesmus vacuolatus to triclosan at apical (growth, photosynthesis) and molecular (transcriptome, metabolome) levels for comparative pathway sensitivity analysis. For each responsive signal (contigs, metabolites), a concentration-response curve was modeled and effect concentrations were calculated leading to the setting of cumulative sensitivity distributions. Molecular responses showed higher sensitivity than apical observations. The functional annotation of contigs and metabolites revealed 118 metabolic pathways putatively impaired by triclosan, highlighting a wide repercussion on the algal metabolism. Metabolites involved in the lipid metabolism showed decreasing trends along the concentration gradient and a globally highest sensitivity, pointing to the primary target of triclosan. The pathways involved in xenobiotic degradation and membrane transporters were mainly regulated in the transcriptome with increasing response trends comprising compensatory responses. The suggested novel approach, combining apical and multi-omics analyses in a concentration-response framework improves mechanistic understanding and mode of action analysis on non-targeted organisms and is suggested to better implement high-throughput multi-omics data in environmental risk assessment.