Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Sport Rehabil ; 30(7): 1102-1105, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33596546

RESUMO

CONTEXT: Greater anterior knee laxity (AKL) is associated with impaired sensory input and decreased functional knee stability. As functional magnetic resonance imaging (MRI) is the gold standard for understanding brain function, methods to load the anterior cruciate ligament in the MRI environment could further our understanding of the ligament's sensory role in knee joint stability. OBJECTIVE: To design and validate an MRI-compatible anterior knee joint loading device. DESIGN: Descriptive laboratory study. SETTING: University laboratory study. PARTICIPANTS: Sixteen healthy and physically active females participated (age = 23.4 [3.7] y; mass = 64.4 [8.4] kg). INTERVENTIONS: The AKL was assessed by a commercially available arthrometer. The AKL was also assessed with a custom-made, MRI-compatible device that produced anterior knee joint loading in a manner similar to the commercial arthrometer while obtaining dynamic structural MRI data. MAIN OUTCOME MEASUREMENTS: The AKL (in millimeters) at 133 N of loading was assessed with the commercial knee arthrometer. Anterior displacement of the tibia relative to the femur obtained at 133 N of loading was measured from dynamic MRI data obtained during usage of the custom device. Pearson correlations were used to examine relationships between the 2 measures. The 95% limits of agreement compared the absolute differences between the 2 devices. RESULTS: There was a 3.2-mm systematic difference between AKL (6.3 [1.6] mm) and anterior tibial translation (3.2 [1.0] mm) measures. There was a significant positive correlation between values obtained from the commercial arthrometer and the MRI-compatible device values (r = .553, P = .026). CONCLUSIONS: While systematic differences were observed, the MRI-compatible anterior knee joint loading device anteriorly translated the tibia relative to the femur in a similar manner to a commercial arthrometer design to stress the anterior cruciate ligament. Such a device may be beneficial in future functional magnetic resonance imaging study of anterior cruciate ligament mechanoreception.


Assuntos
Lesões do Ligamento Cruzado Anterior , Instabilidade Articular , Adulto , Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Fenômenos Biomecânicos , Feminino , Humanos , Joelho , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto Jovem
2.
J Sport Rehabil ; 30(6): 942-951, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33662925

RESUMO

CONTEXT: A bias toward femoral internal rotation is a potential precursor to functional valgus collapse. The gluteal muscles may play a critical role in mitigating these effects. OBJECTIVE: Determine the extent to which gluteal strength and activation mediate associations between femoral alignment measures and functional valgus collapse. DESIGN: Cross-sectional. SETTING: Research laboratory. PATIENTS OR OTHER PARTICIPANTS: Forty-five females (age = 20.1 [1.7] y; height = 165.2 [7.6] cm; weight = 68.6 [13.1] kg) and 45 males (age = 20.8 [2.0] y; height = 177.5 [8.7] cm; weight = 82.7 [16.5] kg), healthy for 6 months prior. INTERVENTION(S): Femoral alignment was measured prone. Hip-extension and abduction strength were obtained using a handheld dynamometer. Three-dimensional biomechanics and surface electromyography were obtained during single-leg forward landings. MAIN OUTCOME MEASURES: Forward stepwise multiple linear regressions determined the influence of femoral alignment on functional valgus collapse and the mediating effects of gluteus maximus and medius strength and activation. RESULTS: In females, less hip abduction strength predicted greater peak hip adduction angle (R2 change = .10; P = .02), and greater hip-extensor activation predicted greater peak knee internal rotation angle (R2 change = .14; P = .01). In males, lesser hip abduction strength predicted smaller peak knee abduction moment (R2 change = .11; P = .03), and the combination of lesser hip abduction peak torque and lesser gluteus medius activation predicted greater hip internal rotation angle (R2 change = .15; P = .04). No meaningful mediation effects were observed (υadj < .01). CONCLUSIONS: In females, after accounting for femoral alignment, less gluteal strength and higher muscle activation were marginally associated with valgus movement. In males, less gluteal strength was associated with a more varus posture. Gluteal strength did not mediate femoral alignment. Future research should determine the capability of females to use their strength efficiently.


Assuntos
Articulação do Quadril , Perna (Membro) , Força Muscular , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos , Nádegas , Estudos Transversais , Feminino , Fêmur , Humanos , Articulação do Joelho , Masculino , Adulto Jovem
3.
Aging Clin Exp Res ; 31(3): 367-375, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29777477

RESUMO

BACKGROUND: Aging and pathology result in changes in the dynamics of several physiological subsystems. Often, these changes are concurrent, altering the dynamics between subsystems. Cardiac and gait rhythms are one example in which patterns change during physical activity. AIMS: The purpose of this research is to simultaneously monitor changes in cardiac and gait rhythms when participants complete various treadmill walking tasks-normal speed, fast speed, and while synchronizing steps with a blinking metronome. METHODS: The cardiac and gait rhythms of younger and older healthy adults were examined in this study during treadmill walking tasks. Pre-test and post-test walking at a preferred walking speed were compared to fast walking and walking with a gait synchronization test. Cardiac and gait rhythms were observed to calculate the mean, standard deviation, coefficient of variation, detrended fluctuation analysis scaling exponent alpha (DFA α), and sample entropy from each 15-min trial. Separate MANOVAs were used to examine the two experimental conditions for cardiac and gait rhythm variability. RESULTS: During the gait synchronization experiment, main effects for phase were exhibited for all gait variables, but none were shown during the fast walking task. Meanwhile, the cardiac rhythms demonstrated decreased mean and increased DFA α only during the synchronization condition. DISCUSSION: Participants, regardless of age, exhibited similar patterns of change in their cardiac and locomotor rhythms during the treadmill walking tasks. Cardiac rhythms were only altered during the gait synchronization task, suggesting it may be possible to simultaneously influence the variability and structure of cardiac and gait rhythms.


Assuntos
Teste de Esforço , Marcha/fisiologia , Frequência Cardíaca , Caminhada/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
J Appl Biomech ; 35(6): 370­376, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31629344

RESUMO

Clinical femoral anteversion (Craig test) and hip range of motion (ROM) have been associated with valgus collapse, but their clinical usefulness in predicting biomechanics is unknown. Our purpose was to determine the individual and combined predictive power of femoral anteversion and passive hip ROM on 3-dimensional valgus collapse (hip internal rotation and adduction, knee rotation, and abduction) during a single-leg forward landing in females. Femoral anteversion and passive hip ROM were measured on 20 females (24.9 [4.1] y, 168.7 [8.0] cm, 63.8 [11.6] kg). Three-dimensional kinematics and kinetics were collected over 5 trials of the task. Each variable was averaged across trials. Backward, stepwise regressions determined the extent to which our independent variables were associated with valgus collapse. The combination of greater hip internal and external rotation ROM (partial r = .52 and .56) predicted greater peak knee internal rotation moment (R2 = .38, P = .02). Less hip internal rotation ROM (partial r = -.44) predicted greater peak knee abduction moments (R2 = .20, P = .05). Greater total hip ROM (internal and external rotation ROM) was not consistently associated with combined motions of valgus collapse but was indicative of isolated knee moments. Passive hip ROM is more associated with knee moments than is femoral anteversion as measured with Craig test.

5.
J Sports Sci ; 36(21): 2492-2501, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29671383

RESUMO

Anterior cruciate ligament (ACL) injury prevention programmes have not been as successful at reducing injury rates in women's basketball as in soccer. This randomised controlled trial (ClinicalTrials.gov #NCT02530333) compared biomechanical adaptations in basketball and soccer players during jump-landing activities after an ACL injury prevention programme. Eighty-seven athletes were cluster randomised into intervention (6-week programme) and control groups. Three-dimensional biomechanical analyses of drop vertical jump (DVJ), double- (SAG-DL) and single-leg (SAG-SL) sagittal, and double- (FRONT-DL) and single-leg (FRONT-SL) frontal plane jump landing tasks were tested before and after the intervention. Peak angles, excursions, and joint moments were analysed using two-way MANCOVAs of post-test scores while controlling for pre-test scores. During SAG-SL the basketball intervention group exhibited increased peak knee abduction angles (p = .004) and excursions (p = .003) compared to the basketball control group (p = .01) and soccer intervention group (p = .01). During FRONT-SL, the basketball intervention group exhibited greater knee flexion excursion after training than the control group (p = .01), but not the soccer intervention group (p = .11). Although women's soccer players exhibit greater improvements in knee abduction kinematics than basketball players, these athletes largely exhibit similar biomechanical adaptations to ACL injury prevention programmes.


Assuntos
Lesões do Ligamento Cruzado Anterior/prevenção & controle , Basquetebol/lesões , Joelho/fisiologia , Condicionamento Físico Humano/métodos , Exercício Pliométrico , Futebol/lesões , Adaptação Fisiológica , Adolescente , Basquetebol/fisiologia , Fenômenos Biomecânicos , Humanos , Futebol/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
6.
Knee Surg Sports Traumatol Arthrosc ; 26(10): 2942-2951, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29340745

RESUMO

PURPOSE: To examine the extent to which an ACL injury prevention programme modifies lower extremity biomechanics during single- and double-leg landing tasks in both the sagittal and frontal plane. It was hypothesized that the training programme would elicit improvements in lower extremity biomechanics, but that these improvements would be greater during a double-leg sagittal plane landing task than tasks performed on a single leg or in the frontal plane. METHODS: Ninety-seven competitive multi-directional sport athletes that competed at the middle- or high-school level were cluster randomized into intervention (n = 48, age = 15.4 ± 1.0 years, height = 1.7 ± 0.07 m, mass = 59.9 ± 11.0 kg) and control (n = 49, age = 15.7 ± 1.6 years, height = 1.7 ± 0.06 m, mass = 60.4 ± 7.7 kg) groups. The intervention group participated in an established 6-week warm-up-based ACL injury prevention programme. Three-dimensional biomechanical analyses of a double- (SAG-DL) and single-leg (SAG-SL) sagittal, and double- (FRONT-DL) and single-leg (FRONT-SL) frontal plane jump landing tasks were tested before and after the intervention. Peak angles, excursions, and external joint moments were analysed for group differences using 2 (group) × 4 (task) repeated measures MANOVA models of delta scores (post-pre-test value) (α < 0.05). RESULTS: Relative to the control group, no significant biomechanical changes were identified in the intervention group for any of the tasks (n.s.). However, a group by task interaction was identified for knee abduction (λ = 0.80, p = 0.02), such that participants in the intervention group showed relative decreases in knee abduction moments during the SAG-DL compared to the SAG-SL (p = 0.005; d = 0.45, CI = 0.04-0.85) task. CONCLUSION: A 6-week warm-up-based ACL injury prevention programme resulted in no significant biomechanical changes during a variety of multi-directional jump landings. Clinically, future prevention programmes should provide a greater training stimulus (intensity, volume), more specificity to tasks associated with the mechanism of ACL injury (single-leg, non-sagittal plane jump landings), and longer programme duration (> 6 weeks) to elicit meaningful biomechanical changes. LEVEL OF EVIDENCE: I.


Assuntos
Lesões do Ligamento Cruzado Anterior/prevenção & controle , Traumatismos em Atletas/prevenção & controle , Exercício de Aquecimento , Adolescente , Fenômenos Biomecânicos , Teste de Esforço , Feminino , Humanos , Joelho , Extremidade Inferior , Masculino , Movimento , Amplitude de Movimento Articular , Rotação
7.
J Strength Cond Res ; 31(11): 3034-3045, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29065078

RESUMO

Taylor, JB, Ford, KR, Schmitz, RJ, Ross, SE, Ackerman, TA, and Shultz, SJ. Biomechanical differences of multidirectional jump landings among female basketball and soccer players. J Strength Cond Res 31(11): 3034-3045, 2017-Anterior cruciate ligament (ACL) injury prevention programs are less successful in basketball than soccer and may be due to distinct movement strategies that these athletes develop from sport-specific training. The purpose of this study was to identify biomechanical differences between female basketball and soccer players during multidirectional jump landings. Lower extremity biomechanics of 89 female athletes who played competitive basketball (n = 40) or soccer (n = 49) at the middle- or high-school level were analyzed with 3-dimensional motion analysis during a drop vertical jump, double- (SAG-DL) and single-leg forward jump (SAG-SL), and double- (FRONT-DL) and single-leg (FRONT-SL) lateral jump. Basketball players landed with either less hip or knee, or both hip and knee excursion during all tasks (p ≤ 0.05) except for the SAGSL task, basketball players landed with greater peak hip flexion angles (p = 0.04). The FRONT-SL task elicited the most distinct sport-specific differences, including decreased hip adduction (p < 0.001) angles, increased hip internal rotation (p = 0.003), and increased relative knee external rotation (p = 0.001) excursions in basketball players. In addition, the FRONT-SL task elicited greater forces in knee abduction (p = 0.003) and lesser forces in hip adduction (p = 0.001) and knee external rotation (p < 0.001) in basketball players. Joint energetics were different during the FRONT-DL task, as basketball players exhibited less sagittal plane energy absorption at the hip (p < 0.001) and greater hip (p < 0.001) and knee (p = 0.001) joint stiffness. Sport-specific movement strategies were identified during all jump landing tasks, such that soccer players exhibited a more protective landing strategy than basketball players, justifying future efforts toward sport-specific ACL injury prevention programs.


Assuntos
Lesões do Ligamento Cruzado Anterior/fisiopatologia , Atletas , Basquetebol/fisiologia , Articulação do Joelho/fisiologia , Futebol/fisiologia , Adolescente , Lesões do Ligamento Cruzado Anterior/prevenção & controle , Fenômenos Biomecânicos , Feminino , Articulação do Quadril/fisiologia , Humanos , Extremidade Inferior/fisiologia , Movimento/fisiologia , Amplitude de Movimento Articular , Rotação , Medicina Esportiva
8.
J Appl Biomech ; 31(5): 340-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26035860

RESUMO

Hamstring stiffness (K(HAM)) and leg stiffness (K(LEG)) are commonly examined relative to athletic performance and injury risk. Given these may be modifiable, it is important to understand day-to-day variations inherent in these measures before use in training studies. In addition, the extent to which K(HAM) and K(LEG) measure similar active stiffness characteristics has not been established. We investigated the interday measurement consistency of K(HAM) and K(LEG), and examined the extent to which K(LEG) predicted K(HAM) in 6 males and 9 females. K(HAM) was moderately consistent day-to-day (ICC(2,5) = .71; SEM = 76.3 N·m(-1)), and 95% limits of agreement (95% LOA) revealed a systematic bias with considerable absolute measurement error (95% LOA = 89.6 ± 224.8 N·m(-1)). Day-to-day differences in procedural factors explained 59.4% of the variance in day-to-day differences in K(HAM). Bilateral and unilateral K(LEG) was more consistent (ICC(2,3) range = .87-.94; SEM range = 1.0-2.91 kN·m(-1)) with lower absolute error (95% LOA bilateral= -2.0 ± 10.3; left leg = -0.36 ± 3.82; right leg = -1.05 ± 3.61 kN·m(-1)). K(LEG) explained 44% of the variance in K(HAM) (P < .01). Findings suggest that procedural factors must be carefully controlled to yield consistent and precise K(HAM) measures. The ease and consistency of K(LEG), and moderate correlation with K(HAM), may steer clinicians toward K(LEG) when measuring lower-extremity stiffness for screening studies and monitoring the effectiveness of training interventions over time.


Assuntos
Desempenho Atlético/fisiologia , Extremidade Inferior/fisiologia , Músculo Esquelético/fisiologia , Acelerometria , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Adulto Jovem
9.
J Sport Rehabil ; 23(4): 319-29, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24307057

RESUMO

CONTEXT: Potential biomechanical compensations allowing for maintenance of maximal explosive performance during prolonged intermittent exercise, with respect to the corresponding rise in injury rates during the later stages of exercise or competition, are relatively unknown. OBJECTIVE: To identify lower-extremity countermovement-jump (CMJ) biomechanical factors using a principal-components approach and then examine how these factors changed during a 90-min intermittent-exercise protocol (IEP) while maintaining maximal jump height. DESIGN: Mixed-model design. SETTING: Laboratory. PARTICIPANTS: Fifty-nine intermittent-sport athletes (30 male, 29 female) participated in experimental and control conditions. INTERVENTIONS: Before and after a dynamic warm-up and every 15 min during the 1st and 2nd halves of an individually prescribed 90-min IEP, participants were assessed on rating of perceived exertion, sprint/cut speed, and 3-dimensional CMJ biomechanics (experimental). On a separate day, the same measures were obtained every 15 min during 90 min of quiet rest (control). MAIN OUTCOME MEASURES: Univariate piecewise growth models analyzed progressive changes in CMJ performance and biomechanical factors extracted from a principal-components analysis of the individual biomechanical dependent variables. RESULTS: While CMJ height was maintained during the 1st and 2nd halves, the body descended less and knee kinetic and energetic magnitudes decreased as the IEP progressed. CONCLUSIONS: The results indicate that vertical-jump performance is maintained along with progressive biomechanical changes commonly associated with decreased performance. A better understanding of lower-extremity biomechanics during explosive actions in response to IEP allows us to further develop and individualize performance training programs.


Assuntos
Desempenho Atlético/normas , Exercício Físico/fisiologia , Extremidade Inferior/fisiologia , Movimento/fisiologia , Força Muscular/fisiologia , Fenômenos Biomecânicos , Teste de Esforço , Feminino , Humanos , Masculino , Análise de Componente Principal , Adulto Jovem
10.
Gait Posture ; 109: 158-164, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309127

RESUMO

BACKGROUND: Individuals with chronic ankle instability (CAI) present somatosensory dysfunction following an initial ankle sprain. However, little is known about how individuals with CAI adapt to a sudden sensory perturbation of instability with increasing task and environmental constraints to maintain postural stability. METHODS: Forty-four individuals with and without unilateral CAI performed the Adaptation Test to a sudden somatosensory inversion and plantarflexion perturbations (environment) in double-, injured-, and uninjured- limbs. Mean sway energy scores were analyzed using 2 (group) × 2 (somatosensory perturbations) × 3 (task) repeated measures analysis of variance. RESULTS: There were significant interactions between the group, environment, and task (P=.025). The CAI group adapted faster than healthy controls to a sudden somatosensory inversion perturbation in the uninjured- (P=.002) and injured- (P<.001) limbs, as well as a sudden somatosensory plantarflexion perturbation in the double- (P=.033) and uninjured- (P=.035) limbs. The CAI and healthy groups presented slower postural adaptation to a sudden inversion perturbation than a sudden somatosensory plantarflexion perturbation in double-limb (P<.001). Whereas both groups demonstrated faster postural adaptation to a sudden somatosensory inversion perturbation compared to somatosensory plantarflexion perturbation while maintaining posture in the injured- (P<.001) and uninjured- (P<.001) limbs. The CAI and healthy groups adapted faster to a sudden somatosensory inversion perturbation in the injured- (P<.001) and uninjured- (P<.001) limbs than in double-limb, respectively. DISCUSSION: Postural adaptation in individuals with and without CAI depended on environmental (somatosensory perturbations) and task constraints. The CAI group displayed comparable and faster postural adaptation to a sudden somatosensory inversion and plantarflexion in double-, injured-, and uninjured- limbs, which may reflect a centrally mediated alteration in neuromuscular control in CAI.


Assuntos
Instabilidade Articular , Entorses e Distensões , Humanos , Tornozelo , Articulação do Tornozelo , Retroalimentação , Postura , Equilíbrio Postural , Doença Crônica
11.
J Athl Train ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37459393

RESUMO

CONTEXT: Chronic ankle instability (CAI) is associated with a less flexibly adaptable sensorimotor system. Thus, individuals with CAI may present an inadequate sensory reweighting system inhibiting the ability to emphasize weight on reliable sensory feedback to control posture. However, how individuals with CAI reweight sensory feedback to maintain postural control in bilateral and unilateral stances has yet to be established. OBJECTIVES: The primary purpose was to examine group differences in how the sensory reweighting system changes to control posture in a simple double-limb stance and a more complex single-limb stance (uninjured-limb, injured-limb) under increased environmental constraints manipulating somatosensory and visual information for individuals with and without CAI. The secondary purpose was to examine the effect of environmental and task constraints on postural control. STUDY DESIGN: Case-control study. SETTING: Laboratory. PATIENTS OR OTHER PARTICIPANTS: 21 individuals with CAI (26.4±5.7years, 171.2±9.8cm, 76.6±15.17kg) and 21 healthy controls (25.8±5.7years, 169.5±9.5cm, 72.4±15.0kg) participated in the study. MAIN OUTCOME MEASURE(S): Equilibrium10 were examined while completing 6 environmental conditions of the Sensory Organization Test (SOT) during 3 tasks (double-limb and single-limb [uninjured, injured] stances). Sensory reweighting ratios for sensory systems (somatosensory, vision, vestibular) were computed from paired Equilibrium10. RESULTS: Significant 3-factor interactions were found between group, sensory systems, and tasks (P=0.006) and for groups, task, and environment (P=0.007). The CAI group failed to downweight vestibular feedback compared to healthy controls while maintaining posture in the injured-limb (P=0.030). The CAI group displayed better postural stability than healthy controls while standing with absent vision, fixed surroundings, and a moving platform in the injured-limb (P=0.032). CONCLUSIONS: The CAI group relied on vestibular feedback while maintaining better postural stability than healthy controls in the injured-limb. Group differences in postural control depended on both environmental (absent vision, moving platform) and task (injured-limb) constraints.

12.
J Orthop Res ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442639

RESUMO

Although higher anterior knee laxity is an established risk factor of ACL injury, underlying mechanisms are uncertain. While decreased proprioception and altered movement patterns in individuals with anterior knee laxity have been identified, the potential impact of higher laxity on brain activity is not well understood. Thus, the purpose of this study is to identify the impact of different magnitudes of knee laxity on brain function during anterior knee joint loading. Twenty-seven healthy and active female college students without any previous severe lower leg injuries volunteered for this study. Anterior knee laxity was measured using a knee arthrometer KT-2000 to assign participants to a higher laxity (N=15) or relatively lower laxity group (N=12). Functional magnetic resonance images were obtained during passive anterior knee joint loading in a task-based design using a 3T MRI scanner. Higher knee laxity individuals demonstrated diminished cortical activation in the left superior parietal lobe during passive anterior knee joint loading. Less brain activation in the regions associated with awareness of bodily movements in females with higher knee laxity may indicate a possible connection between brain activity and knee laxity. The results of this study may help researchers and clinicians develop effective rehabilitation programs for individuals with increased knee laxity. This article is protected by copyright. All rights reserved.

13.
J Strength Cond Res ; 26(8): 2027-36, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21997450

RESUMO

An observed relationship between soccer match duration and injury has led to research examining the changes in lower extremity mechanics and performance with fatiguing exercise. Because many fatigue protocols are designed to result in substantial muscular deficits, they may not reflect the fatigue associated with sport-specific demands that have been associated with the increasing incidence of injury as the match progresses. Thus, the aim of this study was to systematically analyze the progressive changes in lower extremity mechanics and performance during an individualized exercise protocol designed to simulate a 90-minute soccer match. Previous match analysis data were used to systematically develop a simulated soccer match exercise protocol that was individualized to the participant's fitness level. Twenty-four National Collegiate Athletic Association Division I soccer players (12 men, 12 women) participated in 2 testing sessions. In the first session, the participants completed the Yo-Yo Intermittent Recovery Test Level 1 to assess their fitness level and determine the 5 submaximal running intensities for their soccer match simulation. In the second test session, progressive changes in the rating of perceived exertion (RPE), lower extremity performance (vertical jump height, sprint speed, and cutting speed), and movement mechanics (jumping vertical stiffness and terminal landing impedance) were measured during the soccer match simulation. The average match simulation running distance was 10,165 ± 1,001 m, consistent with soccer match analysis research. Time-related increases in RPE, and decrements in sprinting, and cutting speed were observed, suggesting that fatigue increased as the simulation progressed. However, there were no time-related decreases in vertical jump height, changes in lower extremity vertical stiffness in jumping, or vertical impedance during landing. Secondary analyses indicated that the coordinative changes responsible for the maintenance of stiffness and impedance differed between the dominant and nondominant limbs. Despite an increase in RPE to near exhaustive levels, and decrements in sprint and cutting performance, the participants were able to maintain jump performance and movement mechanics. Interestingly, the coordinative changes that allowed for the maintenance of vertical stiffness and impedance varied between limbs. Thus, suggesting that unilateral training for performance and injury prevention in soccer-specific populations should be considered.


Assuntos
Teste de Esforço/métodos , Futebol/fisiologia , Adolescente , Desempenho Atlético/fisiologia , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Extremidade Inferior/lesões , Extremidade Inferior/fisiologia , Masculino , Fadiga Muscular/fisiologia , Aptidão Física/fisiologia , Corrida/fisiologia , Futebol/lesões , Adulto Jovem
14.
Percept Mot Skills ; 129(5): 1504-1524, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35723022

RESUMO

External focus (attention to the movement effect) has been found effective in motor performance and learning. However, while some investigators have suggested that the effect of attentional focus varies with task difficulty, others reported external focus benefits regardless of difficulty. We hypothesized that attentional focus effects would vary with practice, due to changes in the individual's processing efficiency. We had three 20-person participant groups (external focus instructions, internal focus instructions, control) practice three difficulty levels of a Fitts reciprocal tapping task over two days. Participants in the external/internal focus groups were instructed to "mentally focus on moving the pen/your hand as fast and accurately as possible," while control participants were instructed to "mentally focus only on doing your best to achieve the task goal." We then analyzed the effect of attentional focus by task difficulty at the initial performance (the beginning of the practice) and after learning (the retention/transfer phase), using movement time (MT) and number of error taps (Err) as performance measures. The internal focus group made more errors than the control group only at the retention/transfer phase. We found no error differences between the external and internal focus groups, and there were no MT differences between any groups. Our primary hypothesis about the differential effect of attentional focus by practice was supported. The attentional focus effect on Err differed in the retention/transfer phase from the immediate phase, suggesting that practice mediated the attentional focus effect. We discuss how information theory may supplement understanding of attentional focus interventions in motor skill acquisition.


Assuntos
Destreza Motora , Desempenho Psicomotor , Atenção , Humanos , Aprendizagem , Movimento
15.
J Orthop Res ; 40(1): 268-276, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33506964

RESUMO

Females have smaller anterior cruciate ligaments (ACLs) than males and smaller ACLs have been associated with a greater risk of ACL injury. Overall body dimensions do not adequately explain these sex differences. This study examined the extent to which quadriceps muscle volume (VOLQUAD ) positively predicts ACL volume (VOLACL ) once sex and other body dimensions were accounted for. Physically active males (N = 10) and females (N = 10) were measured for height, weight, and body mass index (BMI). Three-Tesla magnetic resonance images of their dominant and nondominant thigh and knee were then obtained to measure VOLACL , quadriceps, and hamstring muscle volumes, femoral notch width, and femoral notch width index. Separate three-step regressions estimated associations between VOLQUAD and VOLACL (third step), after controlling for sex (first step) and one body dimension (second step). When controlling for sex and sex plus BMI, VOLHAM , notch width, or notch width index, VOLQUAD consistently exhibited a positive association with VOLACL in the dominant leg, nondominant leg, and leg-averaged models (p < 0.05). Findings were inconsistent when controlling for sex and height (p = 0.038-0.102). Once VOLQUAD was included, only notch width and notch width index retained a statistically significant individual association with VOLACL (p < 0.01). Statement of Clinical Significance: The positive association between VOLQUAD and VOLACL suggests ACL size may in part be modifiable. Future studies are needed to determine the extent to which an appropriate training stimulus (focused on optimizing overall lower extremity muscle mass development) can positively impact ACL size and structure in young females.


Assuntos
Lesões do Ligamento Cruzado Anterior , Músculo Quadríceps , Ligamento Cruzado Anterior/diagnóstico por imagem , Ligamento Cruzado Anterior/patologia , Lesões do Ligamento Cruzado Anterior/patologia , Feminino , Fêmur/patologia , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/patologia , Fatores de Risco
16.
Sports Health ; 14(3): 328-335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34096370

RESUMO

BACKGROUND: Restricted ankle dorsiflexion range of motion (DFROM) has been linked to lower extremity biomechanics that place an athlete at higher risk for injury. Whether reduced DFROM during dynamic movements is due to restrictions in joint motion or underutilization of available ankle DFROM motion is unclear. HYPOTHESIS: We hypothesized that both lesser total ankle DFROM and underutilization of available motion would lead to high-risk biomechanics (ie, greater knee abduction, reduced knee flexion). STUDY DESIGN: Cross-sectional study. LEVEL OF EVIDENCE: Level 3. METHODS: Nineteen active female athletes (age, 20.0 ± 1.3 years; height, 1.61 ± 0.06 m; mass, 67.0 ± 10.7 kg) participated. Maximal ankle DFROM (clinical measure of ankle DFROM [DF-CLIN]) was measured in a weightbearing position with the knee flexed. Lower extremity biomechanics were measured during a drop vertical jump with 3-dimensional motion and force plate analysis. The percent of available DFROM used during landing (DF-%USED) was calculated as the peak DFROM observed during landing divided by DF-CLIN. Univariate linear regressions were performed to identify whether DF-CLIN or DF-%USED predicted knee and hip biomechanics commonly associated with injury risk. RESULTS: For every 1.0° less of DF-CLIN, there was a 1.0° decrease in hip flexion excursion (r2 = 0.21, P = 0.05), 1.2° decrease in peak knee flexion angles (r2 = 0.37, P = 0.01), 0.9° decrease in knee flexion excursion (r2 = 0.40, P = 0.004), 0.002 N·m·N-1·cm-1 decrease in hip extensor work (r2 = 0.28, P = 0.02), and 0.001 N·m·N-1·cm-1 decrease in knee extensor work (r2 = 0.21, P = 0.05). For every 10% less of DF-%USED, there was a 3.2° increase in peak knee abduction angles (r2 = 0.26, P = 0.03) and 0.01 N·m·N-1·cm-1 lesser knee extensor work (r2 = 0.25, P = 0.03). CONCLUSION: Lower levels of both ankle DFROM and DF-%USED are associated with biomechanics that are considered to be associated with a higher risk of sustaining injury. CLINICAL RELEVANCE: While total ankle DFROM can predict some aberrant movement patterns, underutilization of available ankle DFROM can also lead to higher risk movement strategies. In addition to joint specific mobility training, clinicians should incorporate biomechanical interventions and technique feedback to promote the utilization of available motion.


Assuntos
Tornozelo , Joelho , Adolescente , Adulto , Articulação do Tornozelo , Fenômenos Biomecânicos , Estudos Transversais , Feminino , Humanos , Articulação do Joelho , Extremidade Inferior , Movimento , Amplitude de Movimento Articular , Adulto Jovem
17.
J Athl Train ; 57(9-10): 830-876, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638346

RESUMO

OBJECTIVE: To critically assess the literature focused on sex-specific trajectories in physical characteristics associated with anterior cruciate ligament (ACL) injury risk by age and maturational stage. DATA SOURCES: PubMed, CINAHL, Scopus, and SPORTDiscus databases were searched through December 2021. STUDY SELECTION: Longitudinal and cross-sectional studies of healthy 8- to 18-year-olds, stratified by sex and age or maturation on ≥1 measure of body composition, lower extremity strength, ACL size, joint laxity, knee-joint geometry, lower extremity alignment, balance, or lower extremity biomechanics were included. DATA EXTRACTION: Extracted data included study design, participant characteristics, maturational metrics, and outcome measures. We used random-effects meta-analyses to examine sex differences in trajectory over time. For each variable, standardized differences in means between sexes were calculated. DATA SYNTHESIS: The search yielded 216 primary and 22 secondary articles. Less fat-free mass, leg strength, and power and greater general joint laxity were evident in girls by 8 to 10 years of age and Tanner stage I. Sex differences in body composition, strength, power, general joint laxity, and balance were more evident by 11 to 13 years of age and when transitioning from the prepubertal to pubertal stages. Sex differences in ACL size (smaller in girls), anterior knee laxity and tibiofemoral angle (greater in girls), and higher-risk biomechanics (in girls) were observed at later ages and when transitioning from the pubertal to postpubertal stages. Inconsistent study designs and data reporting limited the number of included studies. CONCLUSIONS: Critical gaps remain in our knowledge and highlight the need to improve our understanding of the relative timing and tempo of ACL risk factor development.


Assuntos
Lesões do Ligamento Cruzado Anterior , Instabilidade Articular , Humanos , Masculino , Feminino , Lesões do Ligamento Cruzado Anterior/complicações , Ligamento Cruzado Anterior , Instabilidade Articular/complicações , Estudos Transversais , Articulação do Joelho , Fatores de Risco
18.
Cartilage ; 13(1_suppl): 1772S-1781S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32954820

RESUMO

OBJECTIVE: Cartilage health is thought to be dependent on the relationship between mechanics, structure, and metabolism, rather than these individual components in isolation. Due to sex differences in cartilage health, there is need to determine if the relationships between these cartilage components separately for males and females. Therefore, we sought to determine the sex-specific associations between cartilage structure and metabolism at rest and their acute response following walking and drop-landing in healthy individuals. DESIGN: A cartilage ultrasound assessment and an ante-cubital blood draw were performed before and after walking and drop-landing conditions in 20 males and 20 females. Cartilage structure was assessed via medial and lateral femoral cartilage cross-sectional area. Cartilage metabolism was quantified with serum cartilage oligomeric matrix protein (COMP) concentration. Percent change scores from pre- to postloading were used to calculate acute alterations in cross-sectional area and COMP. Correlational analyses were used to assess the association between cartilage structure and metabolism measures separately for males and females. RESULTS: In females, greater resting COMP concentration was associated with less cartilage cross-sectional area in the medial(ρ = -0.50, P = 0.03) and lateral (ρ = -0.69, P = 0.001) femur. Resting cartilage measures were not associated among males. Following walking and drop-landing, percent change scores in cartilage structure and metabolism were not associated. CONCLUSIONS: This study highlights that, in females, thinner anterior femoral cartilage is associated with greater resting serum COMP concentrations, a biomarker often linked to cartilage breakdown. Future studies into the relationships between various cartilage components should consider sex-specific analyses as these relationships are sex dependent.


Assuntos
Cartilagem Articular , Biomarcadores/metabolismo , Cartilagem Articular/metabolismo , Feminino , Fêmur/diagnóstico por imagem , Humanos , Masculino , Ultrassonografia , Caminhada/fisiologia
19.
Orthop J Sports Med ; 9(2): 2325967120979986, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33718498

RESUMO

BACKGROUND: High anterior knee laxity (AKL) has been prospectively identified as a risk factor for anterior cruciate ligament (ACL) injuries. Given that ACL morphometry and structural composition have the potential to influence ligamentous strength, understanding how these factors are associated with greater AKL is warranted. HYPOTHESIS: Smaller ACL volumes combined with longer T2* relaxation times would collectively predict greater AKL. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: College-aged active male (n = 20) and female (n = 30) participants underwent magnetic resonance imaging (MRI) and AKL testing. T2-weighted MRI scans were used to assess ACL volumes, and T2* relaxation times were used to assess ACL structural composition. AKL was measured via a commercial knee arthrometer. Forward stepwise linear regression with sex and weight (first step; suppressor variables) as well as ACL volume and T2* relaxation time (second step; independent variables) was used to predict AKL (dependent variable). RESULTS: After initially adjusting for sex and weight (R 2 = 0.19; P = .006), smaller ACL volumes combined with longer T2* relaxation times collectively predicted greater AKL (R 2 = 0.52; P < .001; R 2 Δ = 0.32; P Δ < .001). A smaller ACL volume was the primary predictor of greater AKL (R 2 Δ = 0.28; P < .001), with a longer T2* relaxation time trending toward a significant contribution to greater AKL (R 2 Δ = 0.04; P = .062). After adjusting for ACL volume and T2* relaxation time, sex (partial r = 0.05; P = .735) and weight (partial r = 0.05; P = .725) were no longer significant predictors. CONCLUSION: AKL was largely predicted by ACL volume and to a lesser extent by T2* relaxation time (and not a person's sex and weight). These findings enhance our understanding of how AKL may be associated with a structurally weaker ACL. The current study presents initial evidence that AKL is a cost-effective and clinically accessible measure that shows us something about the structural composition of the ACL. As AKL has been consistently shown to be a risk factor for ACL injuries, work should be done to continue to investigate what AKL may tell a clinician about the structure and composition of the ACL.

20.
Sports Health ; 12(1): 61-65, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31526322

RESUMO

BACKGROUND: Given the relatively high risk of contralateral anterior cruciate ligament (ACL) injury in patients with ACL reconstruction (ACLR), there is a need to understand intrinsic risk factors that may contribute to contralateral injury. HYPOTHESIS: The ACLR group would have smaller ACL volume and a narrower femoral notch width than healthy individuals after accounting for relevant anthropometrics. STUDY DESIGN: Cross-sectional study. LEVEL OF EVIDENCE: Level 3. METHODS: Magnetic resonance imaging data of the left knee were obtained from uninjured (N = 11) and unilateral ACL-reconstructed (N = 10) active, female, collegiate-level recreational athletes. ACL volume was obtained from T2-weighted images. Femoral notch width and notch width index were measured from T1-weighted images. Independent-samples t tests examined differences in all measures between healthy and ACLR participants. RESULTS: The ACLR group had a smaller notch width index (0.22 ± 0.02 vs 0.25 ± 0.01; P = 0.004; effect size, 1.41) and ACL volume (25.6 ± 4.0 vs 32.6 ± 8.2 mm3/(kg·m)-1; P = 0.025; effect size, 1.08) after normalizing by body size. CONCLUSION: Only after normalizing for relevant anthropometrics, the contralateral ACLR limb had smaller ACL size and narrower relative femoral notch size than healthy individuals. These findings suggest that risk factor studies of ACL size and femoral notch size should account for relevant body size when determining their association with contralateral ACL injury. CLINICAL RELEVANCE: The present study shows that the method of the identified intrinsic risk factors for contralateral ACL injury could be used in future clinical screening settings.


Assuntos
Lesões do Ligamento Cruzado Anterior/patologia , Ligamento Cruzado Anterior/anatomia & histologia , Fêmur/anatomia & histologia , Adolescente , Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior , Tamanho Corporal , Estudos Transversais , Feminino , Fêmur/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Projetos Piloto , Recidiva , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa