Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 27(70): 17669-17675, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34637566

RESUMO

Series of lanthanide-containing metallic coordination complexes are frequently presented as structurally analogous, due to the similar chemical and coordinative properties of the lanthanides. In the case of chiral (LnIII [15-MC Cu II N(L-pheHA) -5])3+ metallacrowns (MCs), which are well established supramolecular hosts, the formation of dimers templated by a dicarboxylate guest (muconate) in solution of neutral pH is herein shown to have a unique dependence on the identity of the MC's central lanthanide. Calorimetric data and nuclear magnetic resonance diffusion studies demonstrate that MCs containing larger or smaller lanthanides as the central metal only form monomeric host-guest complexes whereas analogues with intermediate lanthanides (for example, Eu, Gd, Dy) participate in formation of dimeric host-guest-host compartments. The driving force for the dimerization event across the series is thought to be a competition between formation of highly stable MCs (larger lanthanides) and optimally linked bridging guests (smaller lanthanides).


Assuntos
Complexos de Coordenação , Elementos da Série dos Lantanídeos , Calorimetria , Dimerização , Concentração de Íons de Hidrogênio
2.
Chemistry ; 26(6): 1274-1277, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31808971

RESUMO

Multimodal probes capable of combining imaging modalities within a single molecule are in high demand today as they can provide information at both molecular and anatomical levels. Herein, a study was conducted on a series of gallium(III)/lanthanide(III) bis(12-MC-4) metallacrowns (MCs) with the general composition {Ln[12-MCGa III N(shi) -4]}2 (iph)4 (Ln-Ix , x=0, 4, 8, 12), where shi and iph are salicylhydroximate and isophthalate ligands, respectively, or their iodinated derivatives. For Yb-Ix , the attenuation in X-ray computed tomography (XCT) imaging and near-infrared (NIR) luminescence properties can be finely tuned by controlled structural modifications based on iodo groups. Solutions of Yb-Ix appear to be 22-40 times more efficient as XCT agents in comparison to the commercially available iobitridol, while providing an intense emission signal in the NIR range with total quantum yields up to 8.6 %, which are among the highest values reported so far. Therefore, these molecules are promising potential bimodal agents for combined NIR luminescence and XCT imaging.

3.
J Phys Chem A ; 124(50): 10550-10564, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33263395

RESUMO

Lanthanide(III) ions (Ln3+) in coordination compounds exhibit unique luminescence properties with narrow and characteristic f-f transitions throughout the visible and near-infrared (NIR) ranges. In addition, some Ln3+ such as Pr3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ possess an exceptional ability, although less explored, to exhibit dual-range emissions. Such remarkable features allow highly specific use in materials science and biology, for example, for the creation of sophisticated barcode modules or for the next generation of optical imaging applications. Herein, a series of Ga3+/Ln3+ metallacrowns (MCs) with the general composition [LnGa8(shi)8(OH)4]Na·xCH3OH·yH2O (Ln-1, Ln = Pr3+, Nd3+, Sm3+-Yb3+ and analogue Y3+; H3shi = salicylhydroxamic acid) is presented. Ln-1 were obtained by reacting Ga3+ and Ln3+ nitrate salts with the H3shi ligand. X-ray single crystal unit cell analysis confirmed that all MCs are isostructural. The crystal structure was solved for the Nd3+ analogue and revealed that Nd3+ is centered between two [12-MCGaIIIN(shi)-4] MC rings and bound to eight hydroximate oxygen ions (four from each ring) in a pseudosquare antiprismatic fashion adopting a pseudo-D4h symmetry. Pulsed gradient spin echo diffusion ordered 1H NMR spectroscopy and electrospray ionization mass spectrometry confirmed that the structure of Ln-1 remains intact in methanol solutions while mass spectrometry suggests that four OH- bridges are exchanged with CH3O-/CD3O-. An exceptional ability of this series of MCs to sensitize the characteristic emission of Ln3+ was confirmed with the observation of bright red and green emission signals of Eu-1 and Tb-1, NIR emissions of Yb-1 and Nd-1, and dual-range emissions of Pr-1, Sm-1, Dy-1, Ho-1, Er-1, and Tm-1 in the solid state upon excitation into ligand-centered bands at 340 nm. The luminescence properties of Ln-1 (Ln = Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, and Yb3+) were also investigated in CH3OH and CD3OD solutions. For Eu-1 and Yb-1 MCs, more extensive analyses of the photophysical properties were performed, which included the determination of radiative lifetimes, intrinsic quantum yields, and sensitization efficiencies. The absolute quantum yields (QLnL) of Ln-1 in the visible and NIR ranges have been determined. In the case of Sm-1, the values of QLnL in CH3OH and CD3OD solutions are exceptionally high, that is, 10.1(5) and 83(1) %. Values obtained for Yb-1, that is, 0.78(4) % in CH3OH and 8.4(1)% in CD3OD, are among the highest ones reported today for Yb3+ complexes formed with nondeuterated and nonhalogenated ligands.

4.
Membranes (Basel) ; 13(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37999356

RESUMO

Membranes with tailorable surface chemistry have applications in a wide range of industries. Synthesizing membranes from poly(chloromethyl styrene) directly incorporates an alkyl halide surface-bound initiator which can be used to install functional groups via SN2 chemistry or graft polymerization techniques. In this work, poly(chloromethyl styrene) membranes were synthesized through electrospinning. After fabrication, membranes were crosslinked with a diamine, and the chemical resistance of the membranes was evaluated by exposure to 10 M nitric acid, ethanol, or tetrahydrofuran for 24 h. The resulting membranes had diameters on the order of 2-5 microns, porosities of >80%, and permeance on the order of 10,000 L/m2/h/bar. Crosslinking the membranes generally increased the chemical stability. The degree of crosslinking was approximated using elemental analysis for nitrogen and ranged from 0.5 to 0.9 N%. The poly(chloromethyl styrene) membrane with the highest degree of crosslinking did not dissolve in THF after 24 h and retained its high permeance after solvent exposure. The presented chemically resistant membranes can serve as a platform technology due to their versatile surface chemistry and can be used in membrane manufacturing techniques that require the membrane to be contacted with organic solvents or monomers. They can also serve as a platform for separations that are performed in strong acids.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa