Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(11): 2854-2859, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242682

RESUMO

Heat waves and air pollution episodes pose a serious threat to human health and may worsen under future climate change. In this paper, we use 15 years (1999-2013) of commensurately gridded (1° x 1°) surface observations of extended summer (April-September) surface ozone (O3), fine particulate matter (PM2.5), and maximum temperature (TX) over the eastern United States and Canada to construct a climatology of the coincidence, overlap, and lag in space and time of their extremes. Extremes of each quantity are defined climatologically at each grid cell as the 50 d with the highest values in three 5-y windows (∼95th percentile). Any two extremes occur on the same day in the same grid cell more than 50% of the time in the northeastern United States, but on a domain average, co-occurrence is approximately 30%. Although not exactly co-occurring, many of these extremes show connectedness with consistent offsets in space and in time, which often defy traditional mechanistic explanations. All three extremes occur primarily in large-scale, multiday, spatially connected episodes with scales of >1,000 km and clearly coincide with large-scale meteorological features. The largest, longest-lived episodes have the highest incidence of co-occurrence and contain extreme values well above their local 95th percentile threshold, by +7 ppb for O3, +6 µg m-3 for PM2.5, and +1.7 °C for TX. Our results demonstrate the need to evaluate these extremes as synergistic costressors to accurately quantify their impacts on human health.


Assuntos
Poluição do Ar/efeitos adversos , Mudança Climática , Monitoramento Ambiental , Raios Infravermelhos/efeitos adversos , Canadá , Humanos , New England , América do Norte , Ozônio/efeitos adversos , Ozônio/isolamento & purificação , Material Particulado/efeitos adversos , Estações do Ano , Temperatura
2.
Geophys Res Lett ; 43(7): 3509-3518, 2016 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32818004

RESUMO

The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year-2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.

3.
Sci Total Environ ; 949: 175071, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39079641

RESUMO

Episodes of high near-surface ozone concentrations tend to cover large areas for several days. They are strongly dependent on meteorology, precursor emissions, and the ambient photochemical conditions. This study introduces a new pseudo-Lagrangian algorithm that identifies the spatiotemporal patterns of episodes, allowing for a good characterization of their areal extent and an assessment of their drivers. The algorithm has been used to identify ozone episodes in Europe from April to September over the last twenty years (2003-2022) in the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis as well as in the historical simulation (1950-2014) and four shared socio-economic pathways (SSPs, spanning 2015-2100) of three Earth system models (UKESM1-0-LL, EC-Earth3-AerChem and GFDL-ESM4). While the total number of episodes has increased in recent years, the frequency of large episodes has decreased following European precursor emission reductions. The analysis of the 100 largest episodes shows that they tend to occur in Northern Europe during spring and in the center and south of the continent from June onwards. Most of the top 10 episodes occurred in the first years of the century and were associated with high temperatures, enhanced solar radiation, and anticyclonic conditions. Despite the decrease in large episodes in recent years, there is uncertainty regarding future European episodes. Episodes of reduced size are found for SSPs with weak greenhouse forcing and low precursor emissions, whereas episode sizes increase in scenarios with high methane concentrations and enhanced radiative forcing, even exceeding the maximum historical size. However, the three models project episodes of different sizes for any given scenario, probably associated with their differing warming trends and the varying level of complexity in the implementation of processes. These results point to the need to implement both effective climate and air quality policies to address the ozone air pollution problem in Europe in a warming climate.

4.
Sci Adv ; 8(1): eabi9386, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34985958

RESUMO

Wildfires and meteorological conditions influence the co-occurrence of multiple harmful air pollutants including fine particulate matter (PM2.5) and ground-level ozone. We examine the spatiotemporal characteristics of PM2.5/ozone co-occurrences and associated population exposure in the western United States (US). The frequency, spatial extent, and temporal persistence of extreme PM2.5/ozone co-occurrences have increased significantly between 2001 and 2020, increasing annual population exposure to multiple harmful air pollutants by ~25 million person-days/year. Using a clustering methodology to characterize daily weather patterns, we identify significant increases in atmospheric ridging patterns conducive to widespread PM2.5/ozone co-occurrences and population exposure. We further link the spatial extent of co-occurrence to the extent of extreme heat and wildfires. Our results suggest an increasing potential for co-occurring air pollution episodes in the western US with continued climate change.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa