Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Waste Manag Res ; 40(9): 1390-1401, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35311419

RESUMO

STARx (Self-sustaining Treatment for Active Remediation ex situ) is a thermal treatment strategy for contaminated soils and organic wastes. Key to this technology is that organics are embedded in porous matrix beds (e.g. sand). STARx induces a self-sustaining smouldering combustion front that traverses the bed, burning away the embedded contaminants/wastes. The time and cost effectiveness of this technology is largely dictated by the time required for cooling of the hot, clean, porous matrix bed that remains after treatment. This study is the first to explore the cooling of these beds. A suite of novel simulations investigated the influence of key parameters on bed-cooling time. The results reveal that cooling time decreased nearly linearly with decreases of volume-averaged bed temperature and bed bulk density. Increased injection air fluxes led to the non-linear decrease of cooling time. Also, cooling time was negatively impacted by bed temperature inhomogeneity, which influenced preferential air flow through cooler regions of the bed, bypassing hotter regions. From these results, using lower bulk density bed materials, increased air fluxes and enhancing wall insulation to improve bed temperature homogeneity were identified as system optimisations to reduce cooling times. While the aim of this research is to improve the STARx cooling process, the results are also highly applicable to many similar engineering systems that involve hot porous bed cooling.


Assuntos
Poluição Ambiental , Porosidade , Temperatura
2.
Waste Manag Res ; 38(5): 554-566, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32098593

RESUMO

Growing stockpiles of waste oil sludge (WOS) are an outstanding problem worldwide. Self-sustaining Treatment for Active Remediation applied ex situ (STARx) is a treatment technology based on smoldering combustion. Pilot-scale experiments for the STARx Hottpad prove this new concept for the mobile treatment of WOS mixed intentionally with sand or contaminated soil. The experiments also allowed for the calibration and validation of a smoldering propagation numerical model. The model was used to systematically explore the sensitivity of Hottpad performance to system design, operational parameters, and environmental factors. Pilot-scale (~1.5 m width) simulations investigated sensitivity to injected air flux, WOS saturation, heterogeneity of intrinsic permeability, and heterogeneity of WOS saturation. Results reveal that Hottpad design is predicted to be successful for WOS treatment across a wide range of scenarios. The operator can control the rate of WOS destruction and extent of treatment by increasing the air flux injected into the bed. The potential for smoldering channeling to develop was demonstrated for the first time. Under certain conditions, such as WOS saturations of 80%, high heterogeneity of WOS saturations, or moderate to high heterogeneity of soil permeability, smoldering channeling was predicted to accelerate to the point that remedial performance was degraded. Field-scale simulations (~10 m width) predicted successful treatment, with WOS destruction rates an order of magnitude higher than the pilot-scale and treatment times increasing only linearly with bed height. This work is a key step toward the design and effective operation of field STARx Hottpad systems for eliminating WOS.


Assuntos
Esgotos , Poluentes do Solo , Poluição Ambiental , Solo
3.
Environ Sci Technol ; 49(24): 14334-42, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26523324

RESUMO

Self-sustaining treatment for active remediation (STAR) is an emerging, smoldering-based technology for nonaqueous-phase liquid (NAPL) remediation. This work presents the first in situ field evaluation of STAR. Pilot field tests were performed at 3.0 m (shallow test) and 7.9 m (deep test) below ground surface within distinct lithological units contaminated with coal tar at a former industrial facility. Self-sustained smoldering (i.e., after the in-well ignition heater was terminated) was demonstrated below the water table for the first time. The outward propagation of a NAPL smoldering front was mapped, and the NAPL destruction rate was quantified in real time. A total of 3700 kg of coal tar over 12 days in the shallow test and 860 kg over 11 days in the deep test was destroyed; less than 2% of total mass removed was volatilized. Self-sustaining propagation was relatively uniform radially outward in the deep test, achieving a radius of influence of 3.7 m; strong permeability contrasts and installed barriers influenced the front propagation geometry in the shallow test. Reductions in soil hydrocarbon concentrations of 99.3% and 97.3% were achieved in the shallow and deep tests, respectively. Overall, this provides the first field evaluation of STAR and demonstrates that it is effective in situ and under a variety of conditions and provides the information necessary for designing the full-scale site treatment.


Assuntos
Alcatrão/química , Poluição Ambiental/análise , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/análise , Carvão Mineral , Hidrocarbonetos/isolamento & purificação , Peso Molecular , Petróleo/análise , Projetos Piloto , Solo , Temperatura , Volatilização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa