RESUMO
The parallel and synergistic developments of atomic resolution structural information, new spectroscopic methods, their underpinning formalism, and the application of sophisticated theoretical methods have led to a step function change in our understanding of photosynthetic light harvesting, the process by which photosynthetic organisms collect solar energy and supply it to their reaction centers to initiate the chemistry of photosynthesis. The new spectroscopic methods, in particular multidimensional spectroscopies, have enabled a transition from recording rates of processes to focusing on mechanism. We discuss two ultrafast spectroscopies - two-dimensional electronic spectroscopy and two-dimensional electronic-vibrational spectroscopy - and illustrate their development through the lens of photosynthetic light harvesting. Both spectroscopies provide enhanced spectral resolution and, in different ways, reveal pathways of energy flow and coherent oscillations which relate to the quantum mechanical mixing of, for example, electronic excitations (excitons) and nuclear motions. The new types of information present in these spectra provoked the application of sophisticated quantum dynamical theories to describe the temporal evolution of the spectra and provide new questions for experimental investigation. While multidimensional spectroscopies have applications in many other areas of science, we feel that the investigation of photosynthetic light harvesting has had the largest influence on the development of spectroscopic and theoretical methods for the study of quantum dynamics in biology, hence the focus of this review. We conclude with key questions for the next decade of this review.
Assuntos
Complexos de Proteínas Captadores de Luz , Fotossíntese , Análise Espectral , Análise Espectral/métodos , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Teoria QuânticaRESUMO
The efficiency of two-dimensional Dion-Jacobson-type materials relies on the complex interplay between electronic and lattice dynamics; however, questions remain about the functional role of exciton-phonon interactions. Here we establish the robust polaronic nature of the excitons in these materials at room temperature by combining ultrafast spectroscopy and electronic structure calculations. We show that polaronic distortion is associated with low-frequency (30-60 cm-1) lead iodide octahedral lattice motions. More importantly, we discover how targeted ligand modification of this two-dimensional perovskite structure manipulates exciton-phonon coupling, exciton polaron population and carrier cooling. At high excitation density, stronger exciton-phonon coupling increases the hot-carrier lifetime, forming a hot-phonon bottleneck. Our study provides detailed insight into the exciton-phonon coupling and its role in carrier cooling in two-dimensional perovskites relevant for developing emerging hybrid semiconductor materials with tailored properties.
RESUMO
ConspectusThe role of quantum mechanical coherences or coherent superposition states in excited state processes has received considerable attention in the last two decades largely due to advancements in ultrafast laser spectroscopy. These coherence effects hold promise for enhancing the efficiency and robustness of functionally relevant processes, even when confronted with energy disorder and environmental fluctuations. Understanding coherence deeply drives us to unravel mechanisms and dynamics controlled by order and synchronization at a quantum mechanical level, envisioning optical control of coherence to enhance functions or create new ones in molecular and material systems. In this frontier, the interplay between electronic and vibrational dynamics, specifically the influence of vibrations in directing electronic dynamics, has emerged as the leading principle. Here, two energetically disparate quantum degrees of freedom work in-sync to dictate the trajectory of an excited state reaction. Moreover, with the vibrational degree being directly related to the structural composition of molecular or material systems, new molecular designs could be inspired by tailoring certain structural elements.In the realm of chemical kinetics, our understanding of the dynamics of chemical transformations is underpinned by fundamental theories, such as transition state theory, activated rate theory, and Marcus theory. These theories elucidate reaction rates by considering the energy barriers that must be overcome for reactants to transform into products. Those barriers are surmounted by the stochastic nature of energy gap fluctuations within reacting systems, emphasizing that the reaction coordinate, the pathway from reactants to products, is not rigidly defined by a specific vibrational motion but encompasses a diverse array of molecular motions. While less is known about the involvement of specific intramolecular vibrational modes, their significance in certain cases cannot be overlooked.In this Account, we summarize key experimental findings that offer deeper insights into the complex electronic-vibrational trajectories encompassing excited states afforded from state-of-the-art ultrafast laser spectroscopy in three exemplary processes: photoinduced electron transfer, singlet-triplet intersystem crossing, and intramolecular vibrational energy flow in molecular systems. We delve into the rapid decoherence, or loss of phase and amplitude correlations, of vibrational coherences along promoter vibrations during subpicosecond intersystem crossing dynamics in a series of binuclear platinum complexes. This rapid decoherence illustrates the vibration-driven reactive pathways from the Franck-Condon state to the curve crossing region. We also explore the generation of new vibrational coherences induced by impulsive reaction dynamics rather than by the laser pulse in these systems, which sheds light on specific energy dissipation pathways and thereby on the progression of the reaction trajectory in the vicinity of the curve crossing on the product side. Another property of vibrational coherences, amplitude, reveals how energy can flow from one vibration to another in the electronic excited state of a terpyridine-molybdenum complex hosting a nonreactive dinitrogen substrate. A slight change in vibrational energy triggers a quasi-resonant interaction, leading to constructive wavepacket interference and ultimately intramolecular vibrational redistribution from a Franck-Condon active terpyridine vibration to a dinitrogen stretching vibration, energizing the dinitrogen bond.
RESUMO
De novo proteins constructed from novel amino acid sequences are distinct from proteins that evolved in nature. Construct K (ConK) is a binary-patterned de novo designed protein that rescues Escherichia coli from otherwise toxic concentrations of copper. ConK was recently found to bind the cofactor PLP (pyridoxal phosphate, the active form of vitamin B6). Here, we show that ConK catalyzes the desulfurization of cysteine to H2S, which can be used to synthesize CdS nanocrystals in solution. The CdS nanocrystals are approximately 3 nm, as measured by transmission electron microscope, with optical properties similar to those seen in chemically synthesized quantum dots. The CdS nanocrystals synthesized using ConK have slower growth rates and a different growth mechanism than those synthesized using natural biomineralization pathways. The slower growth rate yields CdS nanocrystals with two desirable properties not observed during biomineralization using natural proteins. First, CdS nanocrystals are predominantly of the zinc blende crystal phase; this is in stark contrast to natural biomineralization routes that produce a mixture of zinc blende and wurtzite phase CdS. Second, in contrast to the growth and eventual precipitation observed in natural biomineralization systems, the CdS nanocrystals produced by ConK stabilize at a final size. Future optimization of CdS nanocrystal growth using ConK-or other de novo proteins-may help to overcome the limits on nanocrystal quality typically observed from natural biomineralization by enabling the synthesis of more stable, high-quality quantum dots at room temperature.
Assuntos
Pontos Quânticos , Sulfetos , Sulfetos/química , Semicondutores , Proteínas , ZincoRESUMO
Quantum mechanics revolutionized chemists' understanding of molecular structure. In contrast, the kinetics of molecular reactions in solution are well described by classical, statistical theories. To reveal how the dynamics of chemical systems transition from quantum to classical, we study femtosecond proton transfer in a symmetric molecule with two identical reactant sites that are spatially apart. With the reaction launched from a superposition of two local basis states, we hypothesize that the ensuing motions of the electrons and nuclei will proceed, conceptually, in lockstep as a superposition of probability amplitudes until decoherence collapses the system to a product. Using ultrafast spectroscopy, we observe that the initial superposition state affects the reaction kinetics by an interference mechanism. With the aid of a quantum dynamics model, we propose how the evolution of nuclear wavepackets manifests the unusual intersite quantum correlations during the reaction.
Assuntos
Elétrons , Prótons , Cinética , Estrutura Molecular , Física , Teoria QuânticaRESUMO
The elucidation of protein interaction networks is critical to understanding fundamental biology as well as developing new therapeutics. Proximity labeling platforms (PLPs) are state-of-the-art technologies that enable the discovery and delineation of biomolecular networks through the identification of protein-protein interactions. These platforms work via catalytic generation of reactive probes at a biological region of interest; these probes then diffuse through solution and covalently "tag" proximal biomolecules. The physical distance that the probes diffuse determines the effective labeling radius of the PLP and is a critical parameter that influences the scale and resolution of interactome mapping. As such, by expanding the degrees of labeling resolution offered by PLPs, it is possible to better capture the various size scales of interactomes. At present, however, there is little quantitative understanding of the labeling radii of different PLPs. Here, we report the development of a superresolution microscopy-based assay for the direct quantification of PLP labeling radii. Using this assay, we provide direct extracellular measurements of the labeling radii of state-of-the-art antibody-targeted PLPs, including the peroxidase-based phenoxy radical platform (269 ± 41 nm) and the high-resolution iridium-catalyzed µMap technology (54 ± 12 nm). Last, we apply these insights to the development of a molecular diffusion-based approach to tuning PLP resolution and introduce a new aryl-azide-based µMap platform with an intermediate labeling radius (80 ± 28 nm).
Assuntos
Microscopia , Mapas de Interação de Proteínas , Azidas/química , CatáliseRESUMO
Ammonia synthesis from N,N,O,O-supported manganese(V) nitrides and 9,10-dihydroacridine using proton-coupled electron transfer and visible light irradiation in the absence of precious metal photocatalysts is described. While the reactivity of the nitride correlated with increased absorption of blue light, excited-state lifetimes determined by transient absorption were on the order of picoseconds. This eliminated excited-state manganese nitrides as responsible for bimolecular N-H bond formation. Spectroscopic measurements on the hydrogen source, dihydroacridine, demonstrated that photooxidation of 9,10-dihydroacridine was necessary for productive ammonia synthesis. Transient absorption and pulse radiolysis data for dihydroacridine provided evidence for the presence of intermediates with weak E-H bonds, including the dihydroacridinium radical cation and both isomers of the monohydroacridine radical, but notably these intermediates were unreactive toward hydrogen atom transfer and net N-H bond formation. Additional optimization of the reaction conditions using higher photon flux resulted in higher rates of the ammonia production from the manganese(V) nitrides due to increased activation of the dihydroacridine.
RESUMO
Photothermal conversion is a growing research area that promotes thermal transformations with visible light irradiation. However, few examples of dual photothermal conversion and catalysis limit the power of this phenomenon. Here, we take inspiration from nature's ability to use porphyrinic compounds for nonradiative relaxation to convert light into heat to facilitate thermal polymerization catalysis. We identify the photothermal conversion catalytic activity of a vitamin B12 derivative, heptamethyl ester cobyrinate (HME-Cob), to perform atom transfer radical polymerization (ATRP) under irradiation. Rapid polymerization are obtained under photothermal activation while maintaining good control over polymerization with the aid of a photoinitiator to enable light-induced catalyst regeneration. The catalyst exhibits exquisite temporal control in photocontrolled thermal polymerization. Ultimately, the activation of this complex is accessed across a broad range of wavelengths, including near-IR light, with excellent temporal control. This work showcases the potential of developing photothermal conversion catalysts.
RESUMO
Cryptophytes are photosynthetic microalga that flourish in a remarkable diversity of natural environments by using pigment-containing proteins with absorption maxima tuned to each ecological niche. While this diversity in the absorption has been well established, the subsequent photophysics is highly sensitive to the local protein environment and so may exhibit similar variation. Thermal fluctuations of the protein conformation are expected to introduce photophysical heterogeneity of the pigments that may have evolved important functional properties in a manner similar to that of the absorption. However, such heterogeneity is averaged out in ensemble measurements and, therefore, has not yet been probed. Here, we report single-molecule measurements of phycoerythrin 545 (PE545), the prototypical cryptophyte antenna protein, in its native dimeric form. A conformational ensemble was resolved consisting of distinct photophysical states with different light-harvesting properties. Proteins that did not quench, partially quenched, or fully quenched absorbed light were observed. Light intensity increased the quenched-state population of the dimer, potentially as a mechanism to deal with the extreme light intensities found in aqueous environments. Cross-linking, which mimics local interactions, introduces this light-dependent functionality while also suppressing other conformational dynamics. The cellular organization can, therefore, actively modulate the protein conformation and dynamics, selecting for distinct levels of light harvesting. Thus, the complex conformational equilibrium provides an additional mechanism for cryptophytes and likely other photosynthetic organisms to optimize solar energy capture and conversion.
Assuntos
Ficoeritrina , Ficoeritrina/química , Ficoeritrina/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Conformação Proteica , Criptófitas/química , Criptófitas/metabolismo , Luz , Modelos MolecularesRESUMO
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Assuntos
Elétrons , Prótons , Eletrônica , Transferência de Energia , Análise Espectral/métodosRESUMO
Molecules that violate Hund's rule and possess negative singlet-triplet gaps (ΔEST) have been actively studied for their potential usage in organic light emitting diodes without the need for thermal activation. However, the weak oscillator strength from the symmetry of such molecules has been recognized as their shortcoming for their application in optoelectronic devices. A group of molecules with a common structural motif involving the original molecule with an inverted gap having branches consisting of conjugated molecules of varied structures and extent of conjugation have been predicted to have desirable oscillator strength, but only few detailed and comprehensive studies regarding the form of excited states and the reason behind the improved oscillator strength have been carried out. We show in this work a series of analyses that suggest that the increase of oscillator strength is correlated with the nature of the excited state changing from a localized excitation to a delocalized excitation involving the central molecule and the branches. The resulting oscillator strength thus depends on the energetic matching of the branching molecule and the central molecule, rather than solely the oscillator strength of the central molecule. From the ΔEST inversion point of view, the static correlation with low-lying doubly excited configurations, the key mechanism behind the inversion in the localized excited state, weakens as the excited states delocalize. As a consequence, the dynamic correlation has a more decisive effect in determining the singlet-triplet gap.
RESUMO
Color centers in diamond are promising platforms for quantum technologies. Most color centers in diamond discovered thus far emit in the visible or near-infrared wavelength range, which are incompatible with long-distance fiber communication and unfavorable for imaging in biological tissues. Here, we report the experimental observation of a new color center that emits in the telecom O-band, which we observe in silicon-doped bulk single crystal diamonds and microdiamonds. Combining absorption and photoluminescence measurements, we identify a zero-phonon line at 1221 nm and phonon replicas separated by 42 meV. Using transient absorption spectroscopy, we measure an excited state lifetime of around 270 ps and observe a long-lived baseline that may arise from intersystem crossing to another spin manifold.
RESUMO
This paper concerns the analysis of large quantum states. It is a notoriously difficult problem to quantify separability of quantum states, and for large quantum states, it is unfeasible. Here we posit that when quantum states are large, we can deduce reasonable expectations for the complex structure of non-classical multipartite correlations with surprisingly little information about the state. We show, with pegagogical examples, how known results from combinatorics can be used to reveal the expected structure of various correlations hidden in the ensemble described by a state.
RESUMO
One-electron reduced photosensitizers have been invoked as crucial intermediates in photoredox catalysis, including multiphoton excitation and electrophotocatalytic processes. However, such reduced chromophores have been less investigated, limiting mechanistic studies of their associated electron transfer processes. Here, we report a total of 11 different examples of isolable singly reduced iridium chromophores. Chemical reduction of a cyclometalated iridium complex with potassium graphite affords a 19-electron species. Structural and spectroscopic characterizations reveal a ligand-centered reduction product. The reduced chromophore absorbs a wide range of light from ultraviolet to near-infrared and exhibits photoinduced bimolecular electron transfer reactivity. These studies shed light on elusive reduced iridium chromophores in both ground and excited states, providing opportunities to investigate a commonly invoked intermediate in photoredox catalysis.
RESUMO
Photoenzymes are a rare class of biocatalysts that use light to facilitate chemical reactions. Many of these catalysts utilize a flavin cofactor to absorb light, suggesting that other flavoproteins might have latent photochemical functions. Lactate monooxygenase is a flavin-dependent oxidoreductase previously reported to mediate the photodecarboxylation of carboxylates to afford alkylated flavin adducts. While this reaction holds a potential synthetic value, the mechanism and synthetic utility of this process are unknown. Here, we combine femtosecond spectroscopy, site-directed mutagenesis, and a hybrid quantum-classical computational approach to reveal the active site photochemistry and the role the active site amino acid residues play in facilitating this decarboxylation. Light-induced electron transfer from histidine to flavin was revealed, which has not been reported in other proteins. These mechanistic insights enable the development of catalytic oxidative photodecarboxylation of mandelic acid to produce benzaldehyde, a previously unknown reaction for photoenzymes. Our findings suggest that a much wider range of enzymes have the potential for photoenzymatic catalysis than has been realized to date.
Assuntos
Ácido Láctico , Oxigenases de Função Mista , Oxigenases de Função Mista/química , Oxirredução , Catálise , Flavinas/metabolismoRESUMO
Substituted arenes are ubiquitous in molecules with medicinal functions, making their synthesis a critical consideration when designing synthetic routes. Regioselective C-H functionalization reactions are attractive for preparing alkylated arenes; however, the selectivity of existing methods is modest and primarily governed by the substrate's electronic properties. Here, we demonstrate a biocatalyst-controlled method for the regioselective alkylation of electron-rich and electron-deficient heteroarenes. Starting from an unselective "ene"-reductase (ERED) (GluER-T36A), we evolved a variant that selectively alkylates the C4 position of indole, an elusive position using prior technologies. Mechanistic studies across the evolutionary series indicate that changes to the protein active site alter the electronic character of the charge transfer (CT) complex responsible for radical formation. This resulted in a variant with a significant degree of ground-state CT in the CT complex. Mechanistic studies on a C2-selective ERED suggest that the evolution of GluER-T36A helps disfavor a competing mechanistic pathway. Additional protein engineering campaigns were carried out for a C8-selective quinoline alkylation. This study highlights the opportunity to use enzymes for regioselective radical reactions, where small molecule catalysts struggle to alter selectivity.
Assuntos
Catálise , Alquilação , Calixarenos/química , Indóis/químicaRESUMO
Thermally activated delayed fluorescence enables organic semiconductors with charge transfer-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing. However, thus far, the contribution from the dielectric environment has received insufficient attention. Here we study the role of the dielectric environment in a range of thermally activated delayed fluorescence materials with varying changes in dipole moment upon optical excitation. In dipolar emitters, we observe how environmental reorganization after excitation triggers the full charge transfer exciton formation, minimizing the singlet-triplet energy gap, with the emergence of two (reactant-inactive) modes acting as a vibrational fingerprint of the charge transfer product. In contrast, the dielectric environment plays a smaller role in less dipolar materials. The analysis of energy-time trajectories and their free-energy functions reveals that the dielectric environment substantially reduces the activation energy for reverse intersystem crossing in dipolar thermally activated delayed fluorescence emitters, increasing the reverse intersystem crossing rate by three orders of magnitude versus the isolated molecule.
Assuntos
Semicondutores , FluorescênciaRESUMO
For more than a decade, photoredox catalysis has been demonstrating that when photoactive catalysts are irradiated with visible light, reactions occur under milder, cheaper, and environmentally friendlier conditions. Furthermore, this methodology allows for the activation of abundant chemicals into valuable products through novel mechanisms that are otherwise inaccessible. The photoredox approach, however, has been primarily used for pharmaceutical applications, where its implementation has been highly effective, but typically with a more rudimentary understanding of the mechanisms involved in these transformations. From a global perspective, the manufacture of everyday chemicals by the chemical industry as a whole currently accounts for 10% of total global energy consumption and generates 7% of the world's greenhouse gases annually. In this context, the Bio-Inspired Light-Escalated Chemistry (BioLEC) Energy Frontier Research Center (EFRC) was founded to supercharge the photoredox approach for applications in chemical manufacturing aimed at reducing its energy consumption and emissions burden, by using bioinspired schemes to harvest multiple electrons to drive endothermically uphill chemical reactions. The Center comprises a diverse group of researchers with expertise that includes synthetic chemistry, biophysics, physical chemistry, and engineering. The team works together to gain a deeper understanding of the mechanistic details of photoredox reactions while amplifying the applications of these light-driven methodologies.In this Account, we review some of the major advances in understanding, approach, and applicability made possible by this collaborative Center. Combining sophisticated spectroscopic tools and photophysics tactics with enhanced photoredox reactions has led to the development of novel techniques and reactivities that greatly expand the field and its capabilities. The Account is intended to highlight how the interplay between disciplines can have a major impact and facilitate the advance of the field. For example, techniques such as time-resolved dielectric loss (TRDL) and pulse radiolysis are providing mechanistic insights not previously available. Hypothesis-driven photocatalyst design thus led to broadening of the scope of several existing transformations. Moreover, bioconjugation approaches and the implementation of triplet-triplet annihilation mechanisms created new avenues for the exploration of reactivities. Lastly, our multidisciplinary approach to tackling real-world problems has inspired the development of efficient methods for the depolymerization of lignin and artificial polymers.
Assuntos
Elétrons , Luz , Catálise , OxirreduçãoRESUMO
Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function.
Assuntos
Biofísica , Modelos Biológicos , Modelos Químicos , Elétrons , Transferência de Energia , Metais/química , Modelos Moleculares , Movimento (Física) , Teoria Quântica , Análise Espectral , Fatores de Tempo , VibraçãoRESUMO
Resonance energy transfer (RET) is an important and ubiquitous process whereby energy is transferred from a donor chromophore to an acceptor chromophore without contact via Coulombic coupling. There have been a number of recent advances exploiting the quantum electrodynamics (QED) framework for RET. Here, we extend the QED RET theory to investigate whether real photon exchange can allow for excitation transfer over very long distances if the exchanged photon is waveguided. To study this problem, we consider RET in two spatial dimensions. We derive the RET matrix element using QED in two dimensions, consider an even greater confinement by deriving the RET matrix element for a two-dimensional waveguide using ray theory, and compare the resulting RET elements in 3D and 2D and for the 2D waveguide. We see greatly enhanced RET rates over long distances for both the 2D and 2D waveguide systems and see a great preference for transverse photon mediated transfer in the 2D waveguide system.