Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Hum Genet ; 91(1): 15-26, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22683087

RESUMO

Protein glycosylation is a complex process that depends not only on the activities of several enzymes and transporters but also on a subtle balance between vesicular Golgi trafficking, compartmental pH, and ion homeostasis. Through a combination of autozygosity mapping and expression analysis in two siblings with an abnormal serum-transferrin isoelectric focusing test (type 2) and a peculiar skeletal phenotype with epiphyseal, metaphyseal, and diaphyseal dysplasia, we identified TMEM165 (also named TPARL) as a gene involved in congenital disorders of glycosylation (CDG). The affected individuals are homozygous for a deep intronic splice mutation in TMEM165. In our cohort of unsolved CDG-II cases, we found another individual with the same mutation and two unrelated individuals with missense mutations in TMEM165. TMEM165 encodes a putative transmembrane 324 amino acid protein whose cellular functions are unknown. Using a siRNA strategy, we showed that TMEM165 deficiency causes Golgi glycosylation defects in HEK cells.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Proteínas de Membrana/genética , Mutação , Adolescente , Antiporters , Proteínas de Transporte de Cátions , Células Cultivadas , Criança , Pré-Escolar , Nanismo/genética , Feminino , Fibroblastos , Complexo de Golgi/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Pele/citologia
2.
Biochem Biophys Res Commun ; 390(3): 769-74, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19835842

RESUMO

Congenital Disorders of Glycosylation (CDG) are a group of inherited disorders caused by deficiencies in glycosylation. Since 1980, 14 CDG type I (CDG-I) defects have been identified in the endoplasmic reticulum, all affecting the assembly of the oligosaccharide precursor. However, the number of unsolved CDG-I (CDG-Ix) patients displaying protein hypoglycosylation in combination with an apparently normal assembly of the oligosaccharide precursor is currently expanding. We hypothesized that the hypoglycosylation observed in some of these patients could be caused by a deficiency in the transfer of the oligosaccharide precursor onto protein, a reaction catalyzed by the oligosaccharyltransferase (OST) complex. For this purpose, the different subunits of the OST complex were screened in 27 CDG-Ix patients for whom structural analysis of the lipid-linked oligosaccharides revealed a normal level and intact structure of the oligosaccharide precursor. Among these 27 patients, one was identified with a homozygous missense mutation (c.1121G>A; p.G374D) in the ribophorin 2 (RPN2) subunit of the OST complex. The pathogenic nature of this mutation remains unproven due to the complexity of tackling a possible OST defect.


Assuntos
Hexosiltransferases/deficiência , Proteínas de Membrana/deficiência , Doenças Metabólicas/enzimologia , Complexo de Endopeptidases do Proteassoma/deficiência , Sequência de Aminoácidos , Glicosilação , Hexosiltransferases/genética , Humanos , Proteínas de Membrana/genética , Doenças Metabólicas/genética , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Complexo de Endopeptidases do Proteassoma/genética
3.
Hum Mutat ; 25(6): 583-92, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15880509

RESUMO

Genetic testing in a clinical diagnostic environment must be subject to rigorous quality control procedures, in order to ensure consistency and accuracy of results. Denaturing high performance liquid chromatography (DHPLC) has become a standard prescreening tool for mutation detection, offering very high efficiency and sensitivity of detection. Despite the relatively simple software-assisted assay setup, DHPLC is a complex assay, and quality control is reliant on ensuring optimal instrument performance, excellent assay design and validation, and sufficient user training and proficiency to interpret results. We describe here a unique collaborative effort by a group of diagnostic clinical genetics laboratories with DHPLC expertise who, together with the manufacturer of one of the most widely used DHPLC platforms, have generated standard operating procedures (SOPs) for instrument operation and maintenance, and for mutation detection by DHPLC. We also describe the validation of a disease-specific SOP for DHPLC assisted mutation screening of the MECP2 gene associated with Rett syndrome. The proposed SOP was validated, and used independently in two laboratories to introduce MECP2 testing. In addition, we provide empirically derived normal ranges for the WAVE System Mutation Standards, which are essential for optimal instrument performance. This effort was initiated to try to standardize DHPLC-based mutation screening procedures across laboratories, and so increase the overall quality of this testing method. This endeavor will thus save each laboratory from having to generate SOPs on their own, which is a lengthy and laborious task. In this respect, we define "generic" SOPs as procedures that are easily adaptable to the individual laboratories' quality systems.


Assuntos
Comportamento Cooperativo , Testes Genéticos , Técnicas de Diagnóstico Molecular/normas , Mutação/genética , Desnaturação de Ácido Nucleico/genética , Cromatografia Líquida de Alta Pressão , Análise Mutacional de DNA , Genética Médica , Humanos , Laboratórios , Proteína 2 de Ligação a Metil-CpG/genética , Controle de Qualidade , Reprodutibilidade dos Testes , Projetos de Pesquisa
4.
Eur J Hum Genet ; 10(10): 643-8, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12357336

RESUMO

Since 1997, the molecular basis of six different types of Congenital Disorders of Glycosylation with a defect in the synthesis of N-glycans (CDG-I) has been identified. To assure an efficient molecular diagnosis of the six genes involved in these types, we established a denaturing high-pressure liquid chromatography (DHPLC) screening procedure. Primers were designed and conditions were optimised for the analysis of each exon of the PMM2, MPI, ALG6, ALG3, DPM1 and MPDU1 genes. Forty previously described PMM2 mutations were tested to evaluate the method. All of them could be detected. Hence, the sensitivity of the technique is virtually 100%. Screening of 17 novel cases with a tentative, clinical diagnosis of CDG-Ia identified mutations on both alleles in 14 of them, thereby confirming the diagnosis. Six of these mutations were not previously reported (G15E, G42R, Y64C, E93A, G214S and D223N). Sequencing of the complete coding sequence of PMM2 in the remaining three patients did not reveal mutations, corroborating the good performance of the DHPLC method. A similar DHPLC approach was also applied to CDG-Ib, CDG-Ic, CDG-Id, CDG-Ie and CDG-If samples. New mutations were identified in MPI (Y129C) and ALG6 (G227E). All results were confirmed by sequencing. We conclude that the DHPLC platform is a sensitive and efficient method for the rapid analysis of disease genes with a limited number of exons.


Assuntos
Cromatografia Líquida de Alta Pressão , Proteínas de Membrana , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Glucosiltransferases/genética , Glicosilação , Humanos , Manosiltransferases/genética , Erros Inatos do Metabolismo/classificação , Fosfotransferases (Fosfomutases)/genética , Proteínas Secretadas Inibidoras de Proteinases , Proteínas/genética
5.
Eur J Hum Genet ; 11(1): 85-8, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12529711

RESUMO

Noonan syndrome (NS, MIM 163950) is an autosomal dominant condition characterised by facial dysmorphy, congenital cardiac defects and short stature. Recently missense mutations in PTPN11, the gene encoding the nonreceptor protein tyrosine phosphatase SHP-2 on 12q24, were identified in 50% of analysed Noonan cases. A large four-generation Belgian family with NS and some features suggestive of cardio-facio-cutaneous syndrome (CFC) was previously used to fine map the Noonan syndrome candidate region to a 5 cM region in 12q24. We now report the identification of a mutation (Gln79Arg) in the PTPN11 gene in this large family. In D. melanogaster and C. elegans the PTPN11 gene has been implicated in oogenesis. In this family two affected females had dizygous twins. This suggests that PTPN11 might also be involved in oogenesis and twinning in humans.


Assuntos
Mutação , Síndrome de Noonan/genética , Proteínas Tirosina Fosfatases/genética , Bélgica , Cromossomos Humanos Par 12/genética , Análise Mutacional de DNA , Éxons , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Linhagem , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Gêmeos Dizigóticos
6.
Mol Genet Metab ; 90(4): 408-13, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17307006

RESUMO

Congenital disorders of glycosylation type Ia (CDG-Ia) is a recessive metabolic disorder caused by mutations in the PMM2 gene and characterized by a defect in the synthesis of N-glycans. The clinical presentation ranges from very severe multi-organ failure to mild neurological problems. A plethora of PMM2 mutations has been described and the vast majority are missense mutations. This selection reflects the requirement of a minimal phosphomannomutase activity to be compatible with life. We describe the characterization of two unusual truncating mutations in two CDG-Ia patients. The first patient is compound heterozygous for the PMM2 mutation p.V231M (c.691G>A) and a deep intronic point mutation (c.639-15.479C>T). The latter variant activates a cryptic splice site which results in an in-frame insertion of a pseudoexon of 123 bp between exon 7 and 8. The second patient is compound heterozygous for the mutation p.V44A (c.131T>C) and an Alu retrotransposition mediated complex deletion of approximately 28 kb encompassing exon 8. These types of mutations have not been described before in CDG-Ia patients. Their detection stresses the importance to combine PMM2 mutation screening on genomic DNA with analysis of the transcripts and/or with the enzymatic analysis of the phosphomannomutase activity. Next to the exonic deletions, which already receive more attention than before, it is likely that deep intronic mutations represent an increasingly important category of mutations.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Fosfotransferases (Fosfomutases)/genética , Pré-Escolar , Feminino , Predisposição Genética para Doença , Glicosilação , Humanos , Lactente , Íntrons , Masculino , Deleção de Sequência
7.
Proc Natl Acad Sci U S A ; 103(10): 3764-9, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16537452

RESUMO

The conserved oligomeric Golgi (COG) complex is a heterooctameric complex that regulates intraGolgi trafficking and the integrity of the Golgi compartment in eukaryotic cells. Here, we describe a patient with a mild form of congenital disorder of glycosylation type II (CDG-II) that is caused by a deficiency in the Cog1 subunit of the complex. This patient has a defect in both N- and O-glycosylation. Mass spectrometric analysis of the structures of the N-linked glycans released from glycoproteins from the patient's serum revealed a reduction in sialic acid and galactose residues. Peanut agglutinin (PNA) lectin staining revealed a decrease in sialic acids on core 1 mucin type O-glycans, indicating a combined defect in N- and O-glycosylation. Sequence analysis of the COG1 cDNA and gene identified a homozygous insertion of a single nucleotide (2659-2660insC), which is predicted to lead to a premature translation stop and truncation of the C terminus of the Cog1 protein by 80 amino acids. This mutation destabilizes several other COG subunits and alters their subcellular localization and hence the overall integrity of the COG complex. This results in reduced levels and/or altered Golgi localization of alpha-mannosidase II and beta-1,4 galactosyltransferase I, which links it to the glycosylation deficiency. Transfection of primary fibroblasts of this patient with the full length hemagglutinin-tagged Cog1 indeed restored beta-1,4 galactosyltransferase Golgi localization. We propose naming this disorder CDG-II/Cog1, or CDG-II caused by Cog1 deficiency.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Proteínas de Transporte/genética , Complexo de Golgi/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas Adaptadoras de Transporte Vesicular , Sequência de Bases , Proteínas Sanguíneas/química , Proteínas de Transporte/química , DNA/genética , Análise Mutacional de DNA , Feminino , Glicoproteínas/sangue , Glicoproteínas/química , Glicosilação , Humanos , Técnicas In Vitro , Lactente , Recém-Nascido , Proteínas de Membrana/química , Polissacarídeos/química , Subunidades Proteicas , Transfecção
8.
Am J Med Genet A ; 136(2): 194-7, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15945070

RESUMO

We describe the second case of congenital disorder of glycosylation type IL (CDG-IL) caused by deficiency of the ALG9 a1,2 mannosyltransferase enzyme. The female infant's features included psychomotor retardation, seizures, hypotonia, diffuse brain atrophy with delayed myelination, failure to thrive, pericardial effusion, cystic renal disease, hepatosplenomegaly, esotropia, and inverted nipples. Lipodystrophy and dysmorphic facial features were absent. Magnetic resonance imaging of the brain showed volume loss in the cerebral hemispheres and cerebellum and delayed myelination. Laboratory investigations revealed low levels of multiple serum proteins including antithrombin III, factor XI, and cholesterol. Hypoglycosylation was confirmed by the typical CDG type 1 pattern of serum transferrin analyzed by isoelectric focusing. A defect in the ALG9 enzyme was suggested by the accumulation of the DolPP-GlcNAc2Man6 and DolPP-GlcNAc2Man8 in the patient's fibroblasts and confirmed by mutation analysis: the patient is homozygous for the ALG9 mutation p.Y286C. The causal effect of the mutation was shown by complementation assays in alg9 deficient yeast cells. The child described here further delineates the clinical spectrum of CDG-IL and confirms the significant clinical overlap amongst CDG subtypes.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Manosiltransferases/genética , Mutação , Catepsina A/metabolismo , Defeitos Congênitos da Glicosilação/enzimologia , Defeitos Congênitos da Glicosilação/patologia , Feminino , Teste de Complementação Genética , Glicosilação , Humanos , Lactente , Manosiltransferases/deficiência , Manosiltransferases/metabolismo , Hipotonia Muscular/patologia , Fenótipo , Transtornos Psicomotores/patologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Convulsões/patologia
9.
Glycobiology ; 13(5): 367-75, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12626389

RESUMO

The N-glycans present on the total mixture of serum glycoproteins (serum N-glycome) were analyzed in 24 subjects with congenital disorder of glycosylation type I (CDG-I) and 7 healthy, age-matched individuals. No new N-glycan structures were observed in the sera of CDG-I patients as compared with normal sera. However, we observed in all subtypes a significantly increased degree of core alpha-1,6-fucosylation of the biantennary glycans as compared to normal, as well as a significant decrease in the amount of triantennary glycans. These serum N-glycome changes appear to be a milder manifestation of some of the changes observed in adult liver cirrhosis patients, which is compatible with the reported steatosis and fibrosis in CDG-I patients. In the CDG-Ia subgroup, the extent of the serum N-glycome changes correlates with the aberration of the serum transferrin isoelectric focusing pattern, which measures the severity of the lack of entire N-glycan chains (primary consequence of CDG-I) in the liver and is the standard diagnostic test for this category of inherited diseases.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Fucose/metabolismo , Glicoproteínas/metabolismo , Fosfotransferases (Fosfomutases)/deficiência , Adulto , Erros Inatos do Metabolismo dos Carboidratos/sangue , Fucose/química , Glicoproteínas/sangue , Glicoproteínas/química , Glicosídeo Hidrolases , Glicosilação , Humanos , Focalização Isoelétrica , Cirrose Hepática/sangue , Cirrose Hepática/metabolismo , Neuraminidase , Oligossacarídeos/análise , Polissacarídeos/análise , Polissacarídeos/sangue , Análise de Sequência de DNA , Transferrina/análise , Transferrina/metabolismo
10.
Hum Mol Genet ; 11(5): 599-604, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11875054

RESUMO

Single nucleotide polymorphisms occur throughout the human genome. A gene that causes one of the congenital disorders of glycosylation (CDG) has a mutation (911T-->C ) that changes a phenylalanine to serine at position 304 (F304S) of the alpha 1,3 glucosyl transferase. We show that this change reduces the ability of the gene product to rescue defective glycosylation of an alg6-deficient strain of Saccharomyces cerevisiae during rapid growth. This finding suggested that the mutation might affect glycosylation in humans. We therefore compared the frequency of this variant in 301 controls and in 101 CDG patients who carry known mutations in other genes involved in CDG, i.e. PMM2 (CDG-Ia; 91 patients) and MPI (CDG-Ib; 10 patients). The variant allele frequency is identical in both CDG patients (0.30) and controls (0.28). Importantly, the F304S genotype frequency in 55 CDG-Ia patients classified as mild/moderate (n = 28), or severe (n = 27) was significantly higher in severely affected patients (0.41) than in mild/moderately affected patients (0.21). Mortality (n = 9) was higher when F304S was present (n = 6). Severely affected patients with the PMM2 mutations F119L/R141H (n = 22) carry the F304S mutation more often (0.36) than mildly affected patients (0.18, n = 11) with this mutation. Clinical severity of mildly affected sibs with the same PMM2 mutations did not correlate with F304S genotype. Thus, the presence of the F304S allele may exacerbate the clinical outcome, especially in severely affected CDG patients. We speculate that this type of variant may be implicated in other multi-factorial disorders that involve N-glycosylation.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/fisiopatologia , Glucosiltransferases/genética , Proteínas de Membrana , Mutação/genética , Fosfotransferases (Fosfomutases)/genética , Substituição de Aminoácidos , Estudos de Coortes , Defeitos Congênitos da Glicosilação/enzimologia , Éxons , Galactosiltransferases/química , Galactosiltransferases/genética , Frequência do Gene , Variação Genética , Glicosilação , Heterozigoto , Homozigoto , Humanos , Fosfotransferases (Fosfomutases)/deficiência , Fosfotransferases (Fosfomutases)/metabolismo , Saccharomyces cerevisiae/genética , Serina/metabolismo
11.
Hum Mol Genet ; 13(5): 535-42, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-14709599

RESUMO

Defects of N-linked glycosylation represent diseases with multiple organ involvements that are classified as congenital disorders of glycosylation (CDG). In recent years, several CDG types have been attributed to defects of dolichol-linked oligosaccharide assembly in the endoplasmic reticulum. The profiling of [3H]mannose-labeled lipid-linked oligosaccharides was instrumental in identifying most of these glycosylation disorders. However, this method is poorly suited for the identification of short lipid-linked oligosaccharide biosynthesis defects. To adequately resolve deficiencies affecting the first steps of lipid-linked oligosaccharide formation, we have used a non-radioactive procedure employing the fluorescence detection of 2-aminobenzamide-coupled oligosaccharides after HPLC separation. By applying this method, we have detected the accumulation of dolichylpyrophosphate-GlcNAc2 in a previously untyped CDG patient. The accumulation pattern suggested a deficiency of the ALG1 beta1,4 mannosyltransferase, which adds the first mannose residue to lipid-linked oligosaccharides. This was supported by the finding that this CDG patient was compound heterozygous for three mutations in the ALG1 gene, leading to the amino acid substitutions S150R and D429E on one allele and S258L on the other. The detrimental effect of these mutations on ALG1 protein function was demonstrated in a complementation assay using alg1 Saccharomyces cerevisiae yeast mutants. The ALG1 mannosyltransferase defect described here represents a novel type of CDG, which should be referred to as CDG-Ik.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Manosiltransferases/genética , Oligossacarídeos/biossíntese , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Primers do DNA , Fluorescência , Teste de Complementação Genética , Glucosiltransferases/metabolismo , Glicosilação , Humanos , Manose/metabolismo , Manosiltransferases/deficiência , Dados de Sequência Molecular , Mutação/genética , Oligossacarídeos/metabolismo , Plasmídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae , Alinhamento de Sequência , Análise de Sequência de DNA , ortoaminobenzoatos/metabolismo
12.
Am J Med Genet A ; 118A(4): 382-7, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12687673

RESUMO

Sanfilippo A syndrome, mucopolysaccharidosis type IIIA, is caused by a deficiency of heparan sulphamidase activity, and usually presents in childhood with neurodegeneration leading to death in teenage years. Visceral symptoms are limited to coarsening and diarrhea. We now describe an adult patient who presented with cardiomyopathy. At age 45 years she had hypertension, and the next year she developed a progressively worsening cardiomyopathy with prominent apical hypertrophy and atrial fibrillation. At age 53, she had severe concentric hypertrophic nonobstructive cardiomyopathy in both ventricles. There was no coarsening of features. Neurologic function, skeleton, cornea, liver, and spleen were normal. Percutaneous endomyocardial biopsy showed ballooned cardiomyocytes with storage vacuoles, containing acid mucopolysaccharides. Leucocytes, uterus, and brain biopsy did not show this storage material. There was a slight increase in total urine mucopolysaccharides, with an increased proportion of heparan sulfates. Heparan sulphamidase activity was deficient in leukocytes and heparan sulphamidase protein and activity were reduced in cultured fibroblasts. No mutations were identified after sequencing of the heparan sulphamidase gene at the cDNA and the genomic level. This new clinical presentation expands the clinical spectrum of Sanfilippo A syndrome to include a primary visceral presentation of cardiomyopathy without neurologic symptoms in the adult. The late onset may be related to the residual heparan sulphamidase activity. The genetic basis of this new variant is still unclear. Physicians evaluating adults must remain aware of possible new adult presentations of storage conditions.


Assuntos
Cardiomiopatias/patologia , Mucopolissacaridose III/patologia , Cardiomiopatias/complicações , Cardiomiopatias/genética , Feminino , Fibroblastos/enzimologia , Glicosaminoglicanos/urina , Heparitina Sulfato/urina , Humanos , Hidrolases/deficiência , Pessoa de Meia-Idade , Mucopolissacaridose III/complicações , Mucopolissacaridose III/genética
13.
Glycobiology ; 13(9): 601-22, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12773475

RESUMO

The fundamental importance of correct protein glycosylation is abundantly clear in a group of diseases known as congenital disorders of glycosylation (CDGs). In these diseases, many biological functions are compromised, giving rise to a wide range of severe clinical conditions. By performing detailed analyses of the total serum glycoproteins as well as isolated transferrin and IgG, we have directly correlated aberrant glycosylation with a faulty glycosylation processing step. In one patient the complete absence of complex type sugars was consistent with ablation of GlcNAcTase II activity. In another CDG type II patient, the identification of specific hybrid sugars suggested that the defective processing step was cell type-specific and involved the mannosidase III pathway. In each case, complementary serum proteome analyses revealed significant changes in some 31 glycoproteins, including components of the complement system. This biochemical approach to charting diseases that involve alterations in glycan processing provides a rapid indicator of the nature, severity, and cell type specificity of the suboptimal glycan processing steps; allows links to genetic mutations; indicates the expression levels of proteins; and gives insight into the pathways affected in the disease process.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/sangue , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Glicoproteínas/sangue , Glicoproteínas/química , Polissacarídeos/análise , Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Erros Inatos do Metabolismo dos Carboidratos/genética , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Glicosilação , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Estrutura Molecular , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Isoformas de Proteínas , Proteoma/análise , Proteoma/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transferrina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa