Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 23(4): 407-420, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38224565

RESUMO

Mutations within the oncogene KRAS drive an estimated 25% of all cancers. Only allele-specific KRAS G12C inhibitors are currently available and are associated with the emergence of acquired resistance, partly due to upstream pathway reactivation. Given its upstream role in the activation of KRAS, son of sevenless homolog 1 (SOS1), has emerged as an attractive therapeutic target. Agents that target SOS1 for degradation could represent a potential pan-KRAS modality that may be capable of circumventing certain acquired resistance mechanisms. Here, we report the development of two SOS1 cereblon-based bifunctional degraders, BTX-6654 and BTX-7312, cereblon-based bifunctional SOS1 degraders. Both compounds exhibited potent target-dependent and -specific SOS1 degradation. BTX-6654 and BTX-7312 reduced downstream signaling markers, pERK and pS6, and displayed antiproliferative activity in cells harboring various KRAS mutations. In two KRAS G12C xenograft models, BTX-6654 degraded SOS1 in a dose-dependent manner correlating with tumor growth inhibition, additionally exhibiting synergy with KRAS and MEK inhibitors. Altogether, BTX-6654 provided preclinical proof of concept for single-agent and combination use of bifunctional SOS1 degraders in KRAS-driven cancers.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Mutação , Oncogenes , Transdução de Sinais
2.
PLoS One ; 7(2): e31270, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22355351

RESUMO

Hypoxia-inducible factor-1 (HIF-1) and its most important subunit, HIF-1α, plays a central role in tumor progression by regulating genes involved in cancer cell survival, proliferation and metastasis. HIF-1α activity is associated with nuclear accumulation of the transcription factor and regulated by several mechanisms including modulation of protein stability and degradation. Among recent advances are the discoveries that inflammation-induced cytokines and growth factors affect protein accumulation of HIF-1α under normoxia conditions. TNFα, a major pro-inflammatory cytokine that promotes tumorigenesis is known as a stimulator of HIF-1α activity. To improve our understanding of TNFα-mediated regulation of HIF-1α nuclear accumulation we screened a kinase-specific siRNA library using a cell imaging-based HIF-1α-eGFP chimera reporter assay. Interestingly, this systematic analysis determined that depletion of kinases involved in conventional TNFα signaling (IKK/NFκB and JNK pathways) has no detrimental effect on HIF-1α accumulation. On the other hand, depletion of PRKAR2B, ADCK2, TRPM7, and TRIB2 significantly decreases the effect of TNFα on HIF-1α stability in osteosarcoma and prostate cancer cell lines. These newly discovered regulators conveyed their activity through a non-conventional RELB-depended NFκB signaling pathway and regulation of superoxide activity. Taken together our data allow us to conclude that TNFα uses a distinct and complex signaling mechanism to induce accumulation of HIF-1α in cancer cells. In summary, our results illuminate a novel mechanism through which cancer initiation and progression may be promoted by inflammatory cytokines, highlighting new potential avenues for fighting this disease.


Assuntos
Genômica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Osteossarcoma/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Quinases/genética , RNA Interferente Pequeno/genética , Fator de Necrose Tumoral alfa/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Hipóxia Celular , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Técnicas Imunoenzimáticas , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Osteossarcoma/genética , Osteossarcoma/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Quinases/química , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , Transdução de Sinais , Células Tumorais Cultivadas
3.
PLoS One ; 4(5): e5605, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19440384

RESUMO

BACKGROUND: Mesenchymal stem (MS) cells are excellent candidates for cell-based therapeutic strategies to regenerate injured tissue. Although human MS cells can be isolated from bone marrow and directed to differentiate by means of an osteogenic pathway, the regulation of cell-fate determination is not well understood. Recent reports identify critical roles for microRNAs (miRNAs), regulators of gene expression either by inhibiting the translation or by stimulating the degradation of target mRNAs. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we employed a library of miRNA inhibitors to evaluate the role of miRNAs in early osteogenic differentiation of human MS cells. We discovered that miR-148b, -27a and -489 are essential for the regulation of osteogenesis: miR-27a and miR-489 down-regulate while miR-148b up-regulates differentiation. Modulation of these miRNAs induced osteogenesis in the absence of other external differentiation cues and restored osteogenic potential in high passage number human MS cells. CONCLUSIONS/SIGNIFICANCE: Overall, we have demonstrated the utility of the functional profiling strategy for unraveling complex miRNA pathways. Our findings indicate that miRNAs regulate early osteogenic differentiation in human MS cells: miR-148b, -27a, and -489 were found to play a critical role in osteogenesis.


Assuntos
Diferenciação Celular/fisiologia , Perfilação da Expressão Gênica/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/fisiologia , Regiões 3' não Traduzidas/genética , Diferenciação Celular/genética , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa