Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pflugers Arch ; 465(12): 1701-14, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23812163

RESUMO

Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP(+)). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP(+) uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP(+) uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC50 = 44 ± 2 µM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 µM ASP(+), which demonstrated competitive or mixed type of interaction (K i = 93 ± 16 µM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP(+) uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several uremic toxins, which might indicate a possible role in kidney disease progression during uremia.


Assuntos
Acroleína/farmacologia , Poliaminas Biogênicas/farmacologia , Cátions/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Toxinas Biológicas/farmacologia , Uremia/fisiopatologia , Linhagem Celular , Guanidinas/farmacologia , Humanos , Túbulos Renais Proximais/metabolismo , Transportador 2 de Cátion Orgânico , Compostos de Piridínio
2.
Mol Pharm ; 8(5): 1698-708, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21851097

RESUMO

Resistance against anticancer drugs remains a serious obstacle in cancer treatment. Here we used novel strategies to target microsomal glutathione transferase 1 (MGST1) and glutathione transferase pi (GSTP) that are often overexpressed in tumors and confer resistance against a number of cytostatic drugs, including cisplatin and doxorubicin (DOX). By synthetically combining cisplatin with a GST inhibitor, ethacrynic acid, to form ethacraplatin, it was previously shown that cytosolic GST inhibition was improved and that cells became more sensitive to cisplatin. Here we show that ethacraplatin is easily taken up by the cells and can reverse cisplatin resistance in MGST1 overexpressing MCF7 cells. A second and novel strategy to overcome GST mediated resistance involves using GST releasable cytostatic drugs. Here we synthesized two derivatives of DOX, 2,4-dinitrobenzenesulfonyl doxorubicin (DNS-DOX) and 4-mononitrobenzenesulfonyl doxorubicin (MNS-DOX) and showed that they are substrates for MGST1 and GSTP (releasing DOX). MGST1 overexpressing cells are resistant to DOX. The resistance is partially reversed by DNS-DOX. Interestingly, the less reactive MNS-DOX was more cytotoxic to cells overexpressing MGST1 than control cells. It would appear that, by controlling the reactivity of the prodrug, and thereby the DOX release rate, selective toxicity to MGST1 overexpressing cells can be achieved. In the case of V79 cells, DOX resistance proportional to GSTP expression levels was noted. In this case, not only was drug resistance eliminated by DNS-DOX but a striking GSTP-dependent increase in toxicity was observed in the clonogenic assay. In summary, MGST1 and GSTP resistance to cytostatic drugs can be overcome and cytotoxicity can be enhanced in GST overexpressing cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Glutationa S-Transferase pi/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Cisplatino/análogos & derivados , Cisplatino/metabolismo , Cisplatino/farmacologia , Cricetinae , Cricetulus , Citostáticos/química , Citostáticos/metabolismo , Citostáticos/farmacologia , Doxorrubicina/análogos & derivados , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Ácido Etacrínico/análogos & derivados , Ácido Etacrínico/química , Ácido Etacrínico/metabolismo , Ácido Etacrínico/farmacologia , Feminino , Glutationa S-Transferase pi/genética , Glutationa Transferase/genética , Humanos , Proteínas de Neoplasias/genética , Compostos Organoplatínicos/química , Compostos Organoplatínicos/metabolismo , Compostos Organoplatínicos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
3.
Invest Ophthalmol Vis Sci ; 59(2): 722-730, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29392318

RESUMO

Purpose: Choroidal endothelial cells play a central role in the pathogenesis of age-related macular degeneration (AMD). Protocols for isolating primary choroidal endothelial cells have been described but require access to human donor eyes, which is a limiting factor. Therefore, a conditionally immortalized choroidal endothelial cell (ciChEnC) line has been established. Methods: Choroidal endothelial cells were selected by magnetic-activated cell sorting and conditionally immortalized using temperature-sensitive simian virus 40 large T antigen and human telomerase. The cell line obtained was characterized based on expression of endothelial marker proteins and endothelial cell-specific responses to various stimuli. Binding of AMD-associated and non-AMD variants of complement factor H in the context of a recombinant CCP6-8 (complement control protein domains 6-8) construct was determined using ELISA. Results: ciChEnCs maintained morphology and von Willebrand factor and vascular endothelial cadherin expression for up to 27 passages. The cells internalized acetylated low-density lipoprotein, formed tubes on Matrigel, and increased intercellular adhesion molecule-1 expression in response to tumor necrosis factor-α. Cells grew into dense monolayers with barrier function and showed characteristics of choriocapillary cells, such as expression of plasmalemma vesicle-associated protein, human leukocyte antigen ABC, carbonic anhydrase IV, and membrane indentations reflecting fenestrations. ciChEnCs synthesized glycosaminoglycans chondroitin sulfate and the complement factor H ligand heparan sulfate. Interestingly, binding of the AMD-associated 402H variant of factor H to ciChEnC was significantly decreased compared to the 402Y variant. Conclusions: A novel ciChEnC cell line with choriocapillary characteristics has been established and should greatly facilitate investigation of the pathogenesis of AMD in the context of the choriocapillary microenvironment.


Assuntos
Corioide/irrigação sanguínea , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Degeneração Macular/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Sulfatos de Condroitina/metabolismo , Fator H do Complemento/metabolismo , Impedância Elétrica , Células Endoteliais/ultraestrutura , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Glicosaminoglicanos/isolamento & purificação , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Separação Imunomagnética , Molécula 1 de Adesão Intercelular/metabolismo , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade
4.
Eur J Pharmacol ; 790: 36-45, 2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27395797

RESUMO

The conventional 2-dimensional (2D) cell culture is an invaluable tool in, amongst others, cell biology and experimental pharmacology. However, cells cultured in 2D, on the top of stiff plastic plates lose their phenotypical characteristics and fail in recreating the physiological environment found in vivo. This is a fundamental requirement when the goal of the study is to get a rigorous predictive response of human drug action and safety. Recent approaches in the field of renal cell biology are focused on the generation of 3D cell culture models due to the more bona fide features that they exhibit and the fact that they are more closely related to the observed physiological conditions, and better predict in vivo drug handling. In this review, we describe the currently available 3D in vitro models of the kidney, and some future directions for studying renal drug handling, disease modeling and kidney regeneration.


Assuntos
Técnicas de Cultura de Células/métodos , Rim/citologia , Farmacologia/métodos , Animais , Bioengenharia , Humanos , Rim/efeitos dos fármacos
5.
Cells ; 4(3): 234-52, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26132391

RESUMO

In renal failure, the systemic accumulation of uremic waste products is strongly associated with the development of a chronic inflammatory state. Here, the effect of cationic uremic toxins on the release of inflammatory cytokines and endothelin-1 (ET-1) was investigated in conditionally immortalized proximal tubule epithelial cells (ciPTEC). Additionally, we examined the effects of ET-1 on the cellular uptake mediated by organic cation transporters (OCTs). Exposure of ciPTEC to cationic uremic toxins initiated production of the inflammatory cytokines IL-6 (117 ± 3%, p < 0.001), IL-8 (122 ± 3%, p < 0.001), and ET-1 (134 ± 5%, p < 0.001). This was accompanied by a down-regulation of OCT mediated 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP+) uptake in ciPTEC at 30 min (23 ± 4%, p < 0.001), which restored within 60 min of incubation. Exposure to ET-1 for 24 h increased the ASP+ uptake significantly (20 ± 5%, p < 0.001). These effects could be blocked by BQ-788, indicating activation of an ET-B-receptor-mediated signaling pathway. Downstream the receptor, iNOS inhibition by (N(G)-monomethyl-l-arginine) l-NMMA acetate or aminoguanidine, as well as protein kinase C activation, ameliorated the short-term effects. These results indicate that uremia results in the release of cytokines and ET-1 from human proximal tubule cells, in vitro. Furthermore, ET-1 exposure was found to regulate proximal tubular OCT transport activity in a differential, time-dependent, fashion.

6.
Acta Biomater ; 14: 22-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25527093

RESUMO

The need for improved renal replacement therapies has stimulated innovative research for the development of a cell-based renal assist device. A key requirement for such a device is the formation of a "living membrane", consisting of a tight kidney cell monolayer with preserved functional organic ion transporters on a suitable artificial membrane surface. In this work, we applied a unique conditionally immortalized proximal tubule epithelial cell (ciPTEC) line with an optimized coating strategy on polyethersulfone (PES) membranes to develop a living membrane with a functional proximal tubule epithelial cell layer. PES membranes were coated with combinations of 3,4-dihydroxy-l-phenylalanine and human collagen IV (Coll IV). The optimal coating time and concentrations were determined to achieve retention of vital blood components while preserving high water transport and optimal ciPTEC adhesion. The ciPTEC monolayers obtained were examined through immunocytochemistry to detect zona occludens 1 tight junction proteins. Reproducible monolayers were formed when using a combination of 2 mg ml(-1) 3,4-dihydroxy-l-phenylalanine (4 min coating, 1h dissolution) and 25 µg ml(-1) Coll IV (4 min coating). The successful transport of (14)C-creatinine through the developed living membrane system was used as an indication for organic cation transporter functionality. The addition of metformin or cimetidine significantly reduced the creatinine transepithelial flux, indicating active creatinine uptake in ciPTECs, most likely mediated by the organic cation transporter, OCT2 (SLC22A2). In conclusion, this study shows the successful development of a living membrane consisting of a reproducible ciPTEC monolayer on PES membranes, an important step towards the development of a bioartificial kidney.


Assuntos
Túbulos Renais Proximais/citologia , Membranas Artificiais , Polímeros/farmacologia , Sulfonas/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Transformada , Materiais Revestidos Biocompatíveis/farmacologia , Colágeno Tipo IV/farmacologia , Humanos , Imuno-Histoquímica , Levodopa/farmacologia , Microscopia Eletrônica de Varredura , Permeabilidade , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa