Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell Mol Life Sci ; 80(11): 333, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878054

RESUMO

The conserved multiple PDZ-domain containing protein PATJ stabilizes the Crumbs-Pals1 complex to regulate apical-basal polarity and tight junction formation in epithelial cells. However, the molecular mechanism of PATJ's function in these processes is still unclear. In this study, we demonstrate that knockout of PATJ in epithelial cells results in tight junction defects as well as in a disturbed apical-basal polarity and impaired lumen formation in three-dimensional cyst assays. Mechanistically, we found PATJ to associate with and inhibit histone deacetylase 7 (HDAC7). Inhibition or downregulation of HDAC7 restores polarity and lumen formation. Gene expression analysis of PATJ-deficient cells revealed an impaired expression of genes involved in cell junction assembly and membrane organization, which is rescued by the downregulation of HDAC7. Notably, the function of PATJ regulating HDAC7-dependent cilia formation does not depend on its canonical interaction partner, Pals1, indicating a new role of PATJ, which is distinct from its function in the Crumbs complex. By contrast, polarity and lumen phenotypes observed in Pals1- and PATJ-deficient epithelial cells can be rescued by inhibition of HDAC7, suggesting that the main function of this polarity complex in this process is to modulate the transcriptional profile of epithelial cells by inhibiting HDAC7.


Assuntos
Polaridade Celular , Junções Íntimas , Bioensaio , Regulação para Baixo , Histona Desacetilases/genética
2.
Liver Int ; 43(2): 401-412, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36478640

RESUMO

BACKGROUND AND AIMS: Autosomal dominant polycystic liver and kidney disease is a spectrum of hereditary diseases, which display disturbed function of primary cilia leading to cyst formation. In autosomal dominant polycystic kidney disease a genetic cause can be determined in almost all cases. However, in isolated polycystic liver disease (PLD) about half of all cases remain genetically unsolved, suggesting more, so far unidentified genes to be implicated in this disease. METHODS: Customized next-generation sequencing was used to identify the underlying pathogenesis in two related patients with PLD. A variant identified in SEC61A1 was further analysed in immortalized patients' urine sediment cells and in an epithelial cell model. RESULTS: In both patients, a heterozygous missense change (c.706C>T/p.Arg236Cys) was found in SEC61A1, which encodes for a subunit of the translocation machinery of protein biosynthesis at the endoplasmic reticulum (ER). While kidney disease is absent in the proposita, her mother displays an atypical polycystic kidney phenotype with severe renal failure. In immortalized urine sediment cells, mutant SEC61A1 is expressed at reduced levels, resulting in decreased levels of polycystin-2 (PC2). In an epithelial cell culture model, we found the proteasomal degradation of mutant SEC61A1 to be increased, whereas its localization to the ER is not affected. CONCLUSIONS: Our data expand the allelic and clinical spectrum for SEC61A1, adding PLD as a new and the major phenotypic trait in the family described. We further demonstrate that mutant SEC61A1 results in enhanced proteasomal degradation and impaired biosynthesis of PC2.


Assuntos
Cistos , Hepatopatias , Canais de Translocação SEC , Feminino , Humanos , Linhagem Celular , Cistos/genética , Hepatopatias/genética , Canais de Translocação SEC/genética
3.
Cell Mol Life Sci ; 79(5): 248, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35437696

RESUMO

Drosophila nephrocytes are an emerging model system for mammalian podocytes and proximal tubules as well as for the investigation of kidney diseases. Like podocytes, nephrocytes exhibit characteristics of epithelial cells, but the role of phospholipids in polarization of these cells is yet unclear. In epithelia, phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) and phosphatidylinositol(3,4,5)-trisphosphate (PI(3,4,5)P3) are asymmetrically distributed in the plasma membrane and determine apical-basal polarity. Here, we demonstrate that both phospholipids are present in the plasma membrane of nephrocytes, but only PI(4,5)P2 accumulates at slit diaphragms. Knockdown of Skittles, a phosphatidylinositol(4)phosphate 5-kinase, which produces PI(4,5)P2, abolished slit diaphragm formation and led to strongly reduced endocytosis. Notably, reduction in PI(3,4,5)P3 by overexpression of PTEN or expression of a dominant-negative phosphatidylinositol-3-kinase did not affect nephrocyte function, whereas enhanced formation of PI(3,4,5)P3 by constitutively active phosphatidylinositol-3-kinase resulted in strong slit diaphragm and endocytosis defects by ectopic activation of the Akt/mTOR pathway. Thus, PI(4,5)P2 but not PI(3,4,5)P3 is essential for slit diaphragm formation and nephrocyte function. However, PI(3,4,5)P3 has to be tightly controlled to ensure nephrocyte development.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endocitose , Mamíferos/metabolismo , Fosfatidilinositóis/metabolismo
4.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762353

RESUMO

Endogenous positively charged organic substances, including neurotransmitters and cationic uremic toxins, as well as exogenous organic cations such as the anti-diabetic medication metformin, serve as substrates for organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs). These proteins facilitate their transport across cell membranes. Vectorial transport through the OCT/MATE axis mediates the hepatic and renal excretion of organic cations, regulating their systemic and local concentrations. Organic cation transporters are part of the remote sensing and signaling system, whose activity can be regulated to cope with changes in the composition of extra- and intracellular fluids. Glucose, as a source of energy, can also function as a crucial signaling molecule, regulating gene expression in various organs and tissues. Its concentration in the blood may fluctuate in specific physiological and pathophysiological conditions. In this work, the regulation of the activity of organic cation transporters was measured by incubating human embryonic kidney cells stably expressing human OCT1 (hOCT1), hOCT2, or hMATE1 with high glucose concentrations (16.7 mM). Incubation with this high glucose concentration for 48 h significantly stimulated the activity of hOCT1, hOCT2, and hMATE1 by increasing their maximal velocity (Vmax), but without significantly changing their affinity for the substrates. These effects were independent of changes in osmolarity, as the addition of equimolar concentrations of mannitol did not alter transporter activity. The stimulation of transporter activity was associated with a significant increase in transporter mRNA expression. Inhibition of the mechanistic target of rapamycin (mTOR) kinase with Torin-1 suppressed the transporter stimulation induced by incubation with 16.7 mM glucose. Focusing on hOCT2, it was shown that incubation with 16.7 mM glucose increased hOCT2 protein expression in the plasma membrane. Interestingly, an apparent trend towards higher hOCT2 mRNA expression was observed in kidneys from diabetic patients, a pathology characterized by high serum glucose levels. Due to the small number of samples from diabetic patients (three), this observation must be interpreted with caution. In conclusion, incubation for 48 h with a high glucose concentration of 16.7 mM stimulated the activity and expression of organic cation transporters compared to those measured in the presence of 5.6 mM glucose. This stimulation by a diabetic environment could increase cellular uptake of the anti-diabetic drug metformin and increase renal tubular secretion of organic cations in an early stage of diabetes.


Assuntos
Metformina , Proteínas de Transporte de Cátions Orgânicos , Humanos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/genética , Metformina/farmacologia , Metformina/metabolismo , Cátions/metabolismo , RNA Mensageiro
5.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511245

RESUMO

Cisplatin (CDDP) is an efficient chemotherapeutic agent broadly used to treat solid cancers. Chemotherapy with CDDP can cause significant unwanted side effects such as renal toxicity and peripheral neurotoxicity. CDDP is a substrate of organic cation transporters (OCT), transporters that are highly expressed in renal tissue. Therefore, CDDP uptake by OCT may play a role in causing unwanted toxicities of CDDP anticancer treatment. In this study, the contribution of the mouse OCT2 (mOCT2) to CDDP nephro- and peripheral neurotoxicity was investigated by comparing the effects of cyclic treatment with low doses of CDDP on renal and neurological functions in wild-type (WT) mice and mice with genetic deletion of OCT2 (OCT2-/- mice). This CDDP treatment protocol caused significant impairment of kidneys and peripherical neurological functions in WT mice. These effects were significantly reduced in OCT2-/- mice, however, less profoundly than what was previously measured in mice with genetic deletion of both OCT1 and 2 (OCT1-2-/- mice). Comparing the apparent affinities (IC50) of mOCT1 and mOCT2 for CDDP, the mOCT1 displayed a higher affinity for CDDP than the mOCT2 (IC50: 9 and 558 µM, respectively). Also, cellular toxicity induced by incubation with 100 µM CDDP was more pronounced in cells stably expressing mOCT1 than in cells expressing mOCT2. Therefore, in mice, CDDP uptake by both OCT1 and 2 contributes to the development of CDDP undesired side effects. OCT seem to be suitable targets for establishing treatment protocols aimed at decreasing unwanted CDDP toxicity and improving anticancer treatment with CDDP.


Assuntos
Cisplatino , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Camundongos , Transporte Biológico , Cisplatino/toxicidade , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Rim/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/genética , Transportador 2 de Cátion Orgânico/metabolismo
6.
Cell Mol Life Sci ; 78(7): 3657-3672, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33651172

RESUMO

Apical-basal polarity is a key feature of most epithelial cells and it is regulated by highly conserved protein complexes. In mammalian podocytes, which emerge from columnar epithelial cells, this polarity is preserved and the tight junctions are converted to the slit diaphragms, establishing the filtration barrier. In Drosophila, nephrocytes show several structural and functional similarities with mammalian podocytes and proximal tubular cells. However, in contrast to podocytes, little is known about the role of apical-basal polarity regulators in these cells. In this study, we used expansion microscopy and found the apical polarity determinants of the PAR/aPKC and Crb-complexes to be predominantly targeted to the cell cortex in proximity to the nephrocyte diaphragm, whereas basolateral regulators also accumulate intracellularly. Knockdown of PAR-complex proteins results in severe endocytosis and nephrocyte diaphragm defects, which is due to impaired aPKC recruitment to the plasma membrane. Similar, downregulation of most basolateral polarity regulators disrupts Nephrin localization but had surprisingly divergent effects on endocytosis. Our findings suggest that morphology and slit diaphragm assembly/maintenance of nephrocytes is regulated by classical apical-basal polarity regulators, which have distinct functions in endocytosis.


Assuntos
Polaridade Celular , Proteínas de Drosophila/metabolismo , Endocitose , Junções Intercelulares/fisiologia , Proteínas de Membrana/metabolismo , Podócitos/fisiologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Podócitos/citologia , Podócitos/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo
7.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430667

RESUMO

Tyrosine kinase inhibitors (TKI) such as Masitinib were reported to be useful as therapeutic options in malignant disorders and nonmalignant diseases, like coronavirus disease 2019 (COVID-19). Most kinases must be translocated into targeted cells by the action of specific transport proteins, as they are hydrophilic and not able to cross cell membranes freely. Accordingly, the efficacy of TKI in target cells is closely dependent on the expression of their transporters. Specifically, Masitinib is an organic cation and is expected to interact with organic cation transporters (OCT and Multidrug and Toxin Extrusion proteins-MATE-). The aim of this work was to characterize the interaction of Masitinib with different OCTs. Human embryonic kidney 293 cells stably transfected with murine or human OCT were used for the experiments. The interaction of Masitinib with OCTs was investigated using quenching experiments. The intracellular accumulation of this drug was quantified using high performance liquid chromatography. Our results identified interactions of Masitinib with almost all investigated mouse (m) and human (h) OCTs and hMATE1 and indicated OCT1 and hOCT2 to be especially potent Masitinib translocators across cell membranes. Interestingly, some important differences were observed for the interaction with murine and human OCTs. In the future, investigations concerning further in vitro and in vivo properties of Masitinib and its efficacy related to transporter-related uptake mechanisms under pathophysiological conditions should be performed. Clinical trials in humans and other animals with Masitinib have already shown promising results. However, further research is necessary to understand the disease specific transport mechanisms of Masitinib to contribute to a successful and responsible therapy employment.


Assuntos
COVID-19 , Proteínas de Transporte de Cátions Orgânicos , Humanos , Camundongos , Animais , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico , Tiazóis
8.
Mol Cancer ; 20(1): 74, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33941200

RESUMO

Loss of apical-basal polarity and downregulation of cell-cell contacts is a critical step during the pathogenesis of cancer. Both processes are regulated by the scaffolding protein Pals1, however, it is unclear whether the expression of Pals1 is affected in cancer cells and whether Pals1 is implicated in the pathogenesis of the disease.Using mRNA expression data and immunostainings of cancer specimen, we show that Pals1 is frequently downregulated in colorectal cancer, correlating with poorer survival of patients. We further found that Pals1 prevents cancer cell metastasis by controlling Rac1-dependent cell migration through inhibition of Arf6, which is independent of the canonical binding partners of Pals1. Loss of Pals1 in colorectal cancer cells results in increased Arf6 and Rac1 activity, enhanced cell migration and invasion in vitro and increased metastasis of transplanted tumor cells in mice. Thus, our data reveal a new function of Pals1 as a key inhibitor of cell migration and metastasis of colorectal cancer cells. Notably, this new function is independent of the known role of Pals1 in tight junction formation and apical-basal polarity.


Assuntos
Fator 6 de Ribosilação do ADP/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Membrana/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Movimento Celular/fisiologia , Células HCT116 , Xenoenxertos , Humanos , Camundongos , Invasividade Neoplásica/patologia
9.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502566

RESUMO

The renal secretory clearance for organic cations (neurotransmitters, metabolism products and drugs) is mediated by transporters specifically expressed in the basolateral and apical plasma membrane domains of proximal tubule cells. Here, human organic cation transporter 2 (hOCT2) is the main transporter for organic cations in the basolateral membrane domain. In this study, we stably expressed hOCT2 in Madin-Darby Canine Kidney (MDCK) cells and cultivated these cells in the presence of an extracellular matrix to obtain three-dimensional (3D) structures (cysts). The transport properties of hOCT2 expressed in MDCK cysts were compared with those measured using human embryonic kidney cells (HEK293) stably transfected with hOCT2 (hOCT2-HEK cells). In the MDCK cysts, hOCT2 was expressed in the basolateral membrane domain and showed a significant uptake of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+) with an affinity (Km) of 3.6 ± 1.2 µM, similar to what was measured in the hOCT2-HEK cells (Km = 3.1 ± 0.2 µM). ASP+ uptake was inhibited by tetraethylammonium (TEA+), tetrapentylammonium (TPA+), metformin and baricitinib both in the hOCT2-HEK cells and the hOCT2- MDCK cysts, even though the apparent affinities of TEA+ and baricitinib were dependent on the expression system. Then, hOCT2 was subjected to the same rapid regulation by inhibition of p56lck tyrosine kinase or calmodulin in the hOCT2-HEK cells and hOCT2- MDCK cysts. However, inhibition of casein kinase II regulated only activity of hOCT2 expressed in MDCK cysts and not in HEK cells. Taken together, these results suggest that the 3D cell culture model is a suitable tool for the functional analysis of hOCT2 transport properties, depending on cell polarization.


Assuntos
Técnicas de Cultura de Células/métodos , Polaridade Celular/fisiologia , Células Epiteliais/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Animais , Transporte Biológico/fisiologia , Cátions/metabolismo , Cães , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Metilaminas/metabolismo , Microscopia de Fluorescência/métodos , Transportador 2 de Cátion Orgânico/genética , Compostos de Piridínio/metabolismo
10.
Arch Toxicol ; 93(10): 2835-2848, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31493026

RESUMO

Cisplatin (CDDP) is one of the most important chemotherapeutic drugs in modern oncology. However, its use is limited by severe toxicities, which impair life quality after cancer. Here, we investigated the role of organic cation transporters (OCT) in mediating toxicities associated with chronic (twice the week for 4 weeks) low-dose (4 mg/kg body weight) CDDP treatment (resembling therapeutic protocols in patients) of wild-type (WT) mice and mice with OCT genetic deletion (OCT1/2-/-). Functional and molecular analysis showed that OCT1/2-/- mice are partially protected from CDDP-induced nephrotoxicity and peripheral neurotoxicity, whereas ototoxicity was not detectable. Surprisingly, proteomic analysis of the kidneys demonstrated that genetic deletion of OCT1/2 itself was associated with significant changes in expression of proinflammatory and profibrotic proteins which are part of an OCT-associated protein network. This signature directly regulated by OCT consisted of three classes of proteins, viz., profibrotic proteins, proinflammatory proteins, and nutrient sensing molecules. Consistent with functional protection, CDDP-induced proteome changes were more severe in WT mice than in OCT1/2-/- mice. Laser ablation-inductively coupled plasma-mass spectrometry analysis demonstrated that the presence of OCT was not associated with higher renal platinum concentrations. Taken together, these results redefine the role of OCT from passive membrane transporters to active modulators of cell signaling in the kidney.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Fator 1 de Transcrição de Octâmero/genética , Transportador 2 de Cátion Orgânico/genética , Animais , Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/patologia , Masculino , Camundongos , Camundongos Knockout , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/genética , Fator 1 de Transcrição de Octâmero/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Ototoxicidade/etiologia , Ototoxicidade/genética , Proteômica , Transdução de Sinais/efeitos dos fármacos
11.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653114

RESUMO

Renal drug transporters such as the organic cation transporters (OCTs), organic anion transporters (OATs) and multidrug resistance proteins (MRPs) play an important role in the tubular secretion of many drugs influencing their efficacy and safety. However, only little is known about the distinct protein abundance of these transporters in human kidneys, and about the impact of age and gender as potential factors of inter-subject variability in their expression and function. The aim of this study was to determine the protein abundance of MDR1, MRP1-4, BCRP, OAT1-3, OCT2-3, MATE1, PEPT1/2, and ORCTL2 by liquid chromatography-tandem mass spectrometry-based targeted proteomics in a set of 36 human cortex kidney samples (20 males, 16 females; median age 53 and 55 years, respectively). OAT1 and 3, OCT2 and ORCTL2 were found to be most abundant renal SLC transporters while MDR1, MRP1 and MRP4 were the dominating ABC transporters. Only the expression levels of MDR1 and ORCTL2 were significantly higher abundant in older donors. Moreover, we found several significant correlations between different transporters, which may indicate their functional interplay in renal vectorial transport processes. Our data may contribute to a better understanding of the molecular processes determining renal excretion of drugs.


Assuntos
Córtex Renal/metabolismo , Proteoma/análise , Espectrometria de Massas em Tandem , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Fatores Etários , Idoso , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/genética , Transportador 2 de Cátion Orgânico/metabolismo , Fatores Sexuais
12.
FASEB J ; 31(4): 1421-1433, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28031320

RESUMO

CD63 is a ubiquitously expressed member of the tetraspanin superfamily. Using a mating-based split-ubiquitin-yeast 2-hybrid system, pull-down experiments, total internal reflection fluorescence microscopy, Förster resonance energy transfer, and biotinylation assays, we found that CD63 interacts with human organic cation transporter 2 (hOCT2), which transports endogenous and exogenous substrates, such as neurotransmitters and drugs in several epithelial cells. CD63 overexpression affects cellular localization of hOCT2 expressed in human embryonic kidney (HEK)293 cells. Studies with CD63-knockout mice indicate that in renal proximal tubules, CD63 determines the insertion of the mouse ortholog of the transporter into the proper membrane domain and mediates transporter regulation by trafficking processes. In polarized Madin-Darby kidney canine kidney (MDCK) epithelial cells, CD63 and hOCT2 colocalize with the small GTPase Rab4, which controls the rapid recycling from sorting endosomes back to the cell surface. Suitable negative and positive control experiments were performed for each experimental approach. Empty vector transfected cells and wild-type mice were used as control. CD63 seems to play a role in the recycling of hOCT2 from endosomes to the basolateral membrane in polarized epithelia. These data indicate that CD63 has a previously uncharacterized function in regulating trafficking of specific membrane proteins in polarized cells.-Schulze, U., Brast, S., Grabner, A., Albiker, C., Snieder, B., Holle, S., Schlatter, E., Schröter, R., Pavenstädt, H., Herrmann, E., Lambert, C., Spoden, G. A., Florin, L., Saftig, P., Ciarimboli, G. Tetraspanin CD63 controls basolateral sorting of organic cation transporter 2 in renal proximal tubules.


Assuntos
Túbulos Renais Proximais/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Tetraspanina 30/metabolismo , Animais , Membrana Celular/metabolismo , Cães , Endossomos/metabolismo , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Túbulos Renais Proximais/citologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Transportador 2 de Cátion Orgânico , Ligação Proteica , Transporte Proteico , Tetraspanina 30/genética , Proteínas rab4 de Ligação ao GTP/metabolismo
13.
FASEB J ; 30(10): 3588-3597, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27464968

RESUMO

With this study, we wanted to prove the hypothesis that the unique extracellular osmolality within the renal medulla modulates a specific gene expression pattern. The physiologic functions of the kidneys are mediated by the segment-specific expression of key proteins. So far, we have limited knowledge about the mechanisms that control this gene expression pattern. The hyperosmolality in the renal medullary interstitium is of major importance as a driving force for urine concentration. We made use of primarily cultured rat renal inner medullary collecting-duct cells and microarray analysis to identify genes affected by the environmental osmolality of the culture medium. We identified hundreds of genes that were either induced or repressed in expression by hyperosmolality in a time- and osmolality-dependent fashion. Further analysis demonstrated that many of them, physiologically, showed a kidney- and even collecting-duct-specific expression, including secreted proteins, kinases, and transcription factors. On the other hand, we identified factors, down-regulated in expression, that have a diuretic effect. In conclusion, the kidney is the only organ that has such a hyperosmotic environment, and study provides an excellent method for controlling tissue-specific gene expression.-Schulze Blasum, B., Schröter, R., Neugebauer, U., Hofschröer, V., Pavenstädt, H., Ciarimboli, G., Schlatter E., Edemir, B. The kidney-specific expression of genes can be modulated by the extracellular osmolality.


Assuntos
Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Concentração Osmolar , Cloreto de Sódio/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Espaço Extracelular/efeitos dos fármacos , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo
14.
Mol Pharm ; 10(6): 2370-80, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23607617

RESUMO

Kidney transplanted patients are often treated with immunosuppressive, antihypertensive, and antibiotic drugs such as cyclosporine A (CsA), ß-blockers, and fluoroquinolones, respectively. Organic cation transporters (OCT) expressed in the basolateral membrane of proximal tubules represent an important drug excretion route. In this work, the renal expression of OCT after syngeneic and allogeneic kidney transplantation in rats with or without CsA immunosuppression was studied. Moreover, the interactions of CsA, ß-blockers (pindolol/atenolol), and fluoroquinolones (ofloxacin/norfloxacin) with rOCT1, rOCT2, hOCT1, and hOCT2 in stably transfected HEK293-cells were studied. Kidney transplantation was associated with reduced expression of rOCT1, while rOCT2 showed only reduced expression after allogeneic transplantation. All drugs interacted subtype- and species-dependently with OCT. However, only atenolol, pindolol, and ofloxacin were transported by hOCT2, the main OCT in human kidneys. While CsA is not an OCT substrate, it exerts a short-term effect on OCT activity, changing their affinity for some substrates. In conclusion, appropriate drug dosing in transplanted patients is difficult partly because OCT are down-regulated and because concomitant CsA treatment may influence the affinity of the transporters. Moreover, drug-drug competition at the transporter can also alter drug excretion rate.


Assuntos
Antagonistas Adrenérgicos beta/metabolismo , Fluoroquinolonas/metabolismo , Transplante de Rim/efeitos adversos , Túbulos Renais Proximais/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Animais , Western Blotting , Linhagem Celular , Ciclosporina/uso terapêutico , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Proteínas de Transporte de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico , Ratos , Reação em Cadeia da Polimerase em Tempo Real
15.
Biomolecules ; 13(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36979408

RESUMO

In late 2019, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of coronavirus disease 2019 (COVID-19) emerged in China and spread rapidly around the world, causing an ongoing pandemic of global concern. COVID-19 proceeds with moderate symptoms in most patients, whereas others experience serious respiratory illness that requires intensive care treatment and may end in death. The severity of COVID-19 is linked to several risk factors including male sex, comorbidities, and advanced age. Apart from respiratory complications, further impairments by COVID-19 affecting other tissues of the human body are observed. In this respect, the human kidney is one of the most frequently affected extrapulmonary organs and acute kidney injury (AKI) is known as a direct or indirect complication of SARS-CoV-2 infection. The aim of this work was to investigate the importance of the protein angiotensin-converting enzyme 2 (ACE2) for a possible cell entry of SARS-CoV-2 into human kidney cells. First, the expression of the cellular receptor ACE2 was demonstrated to be decisive for viral SARS-CoV-2 cell entry in human AB8 podocytes, whereas the presence of the transmembrane protease serine 2 (TMPRSS2) was dispensable. Moreover, the ACE2 protein amount was well detectable by mass spectrometry analysis in human kidneys, while TMPRSS2 could be detected only in a few samples. Additionally, a negative correlation of the ACE2 protein abundance to male sex and elderly aged females in human kidney tissues was demonstrated in this work. Last, the possibility of a direct infection of kidney tubular renal structures by SARS-CoV-2 was demonstrated.


Assuntos
COVID-19 , Idoso , Feminino , Humanos , Masculino , Enzima de Conversão de Angiotensina 2 , Rim/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/metabolismo
16.
Front Cell Dev Biol ; 9: 688885, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124075

RESUMO

Organic cation transporters (OCT) play an important role in mediating cellular uptake of several pharmaceuticals, such as the antidiabetic drug metformin and the platinum-derived chemotherapeutics. Since these drugs can also affect the pancreas, here it was investigated whether these transporters are expressed in this organ. An interaction between OCT2 and the glucose transporter 2 (GLUT2), which is expressed with important functional consequences in the kidneys and in the pancreas, has already been demonstrated elsewhere. Therefore, here it was further investigated whether the two proteins have a functional relationship. It was demonstrated that OCT2 is expressed in pancreas, probably in ß cells of Langerhans islets, together with GLUT2. However, a co-localization was only evident in a cell-line model of rat pancreatic ß cells under incubation with high glucose concentration. High glucose stimulated OCT2 expression and activity. On the other side, studies conducted in human embryonic kidney cells stably expressing OCT2, showed that overexpression of GLUT2 decreased OCT2 activity. Unfortunately, pull-down experiments aimed to confirm a physical OCT2/GLUT2 interaction were not successful. Renal glucose excretion was reduced in mice with genetic deletion of OCT2. Nonetheless, in these mice no regulation of known kidney glucose transporters was measured. Therefore, it may be speculated that OCT2 may influence cellular trafficking of GLUT2, without changing its amount. OCT2 may play a role in drug uptake of the pancreas, and its activity may be regulated by glucose and GLUT2. Vice versa, GLUT2 activity may be regulated through an interaction with OCT2.

17.
Nephrol Dial Transplant ; 25(8): 2492-501, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20176611

RESUMO

BACKGROUND: Chronic allograft nephropathy, now more specifically termed interstitial fibrosis and tubular atrophy without evidence of any specific aetiology (IF/TA), is still an important cause of late graft loss. There is no effective therapy for IF/TA, in part due to the disease's multifactorial nature and its incompletely understood pathogenesis. METHODS: We used a differential in-gel electrophoresis and mass spectrometry technique to study IF/TA in a renal transplantation model. Dark Agouti (DA) kidneys were allogeneically transplanted to Wistar-Furth (DA-WF, aTX) rats. Syngeneic grafts (DA-DA, sTX) served as controls. Nine weeks after transplantation, blood pressure, renal function and electrolytes were studied, in addition to real-time PCR, western blot analysis, histology and immunohistochemistry. RESULTS: In contrast to sTX, the aTX developed IF/TA-dependent renal damage. Ten differentially regulated proteins were identified by 2D gel analysis and mass spectrometry, whereupon five proteins are mainly related to oxidative stress (aldo-keto reductase, peroxiredoxin-1, NAD(+)-dependent isocitrate dehydrogenase, iron-responsive element-binding protein-1 and serum albumin), two participate in cytoskeleton organization (l-plastin and ezrin) and three are assigned to metabolic functions (creatine kinase, ornithine aminotransferase and fructose-1,6-bisphosphatase). CONCLUSION: The proteins related to IF/TA and involved in oxidative stress, cytoskeleton organization and metabolic functions may correspond with novel therapeutic targets.


Assuntos
Transplante de Rim , Túbulos Renais/metabolismo , Nefrite Intersticial/metabolismo , Proteômica , Animais , Atrofia/metabolismo , Atrofia/patologia , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Fibrose/metabolismo , Fibrose/patologia , Túbulos Renais/patologia , Masculino , Nefrite Intersticial/patologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Endogâmicos , Ratos Endogâmicos WF , Transplante Homólogo
18.
J Am Soc Nephrol ; 19(3): 538-46, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18216318

RESUMO

Kidney transplantation, especially when associated with acute rejection, leads to changes in the expression of many genes, including those encoding solute transporters and water channels. In a rat model of acute rejection after allogeneic renal transplantation, impaired renal function, increased urine volume, and increased fractional excretion of sodium were observed. Gene array analysis revealed that these findings were associated with significant downregulation of water channels (aquaporin-1, -2, -3, and -4) and transporters of sodium, glucose, urea, and other solutes. In addition, changes in expression of various receptors, kinases, and phosphatases that modulate the expression or activity of renal transport systems were observed. Syngeneic transplantation or treatment with cyclosporine A following allogeneic transplantation did not impair graft function but did lead to the downregulation of aquaporin-1, -3, and -4 and several solute transporters. However, expression of aquaporin-2 and the epithelial sodium channel did not change, suggesting that the downregulation of these transporters following allogeneic transplantation is rejection-dependent. In conclusion, changes in gene expression may explain the impaired handling of solute and water after allogeneic transplantation, especially during acute rejection. Treatment with cyclosporine A improves the regulation of solute and water by preventing the downregulation of aquaporin-2 and epithelial sodium channel, even though many other transporter genes remain downregulated.


Assuntos
Ciclosporina/farmacologia , Expressão Gênica , Rejeição de Enxerto/metabolismo , Imunossupressores/farmacologia , Transplante de Rim/efeitos adversos , Túbulos Renais Coletores/metabolismo , Animais , Aquaporina 2/metabolismo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Rejeição de Enxerto/patologia , Rim/patologia , Transplante de Rim/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Ratos
19.
Biomolecules ; 9(10)2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591331

RESUMO

The human organic cation transporter 2 (hOCT2) is highly expressed in proximal tubules of the kidneys, where it plays an important role in the secretion of organic cations. Since many drugs are organic cations, hOCT2 has relevant pharmacological implications. The hOCT2 gene is polymorphic, and the nonsynonymous single nucleotide polymorphism (SNP) causing the substitution of alanine at position 270 of the protein sequence with serine (Ala270Ser) is present with high frequency in the human population. Therefore, Ala270Ser has potentially important pharmacologic consequences. Here, we analyzed the transport properties and rapid regulation of hOCT2 wildtype and hOCT2 Ala270Ser expressed in human embryonic kidney cells using real-time uptake measurements. Moreover, we compared the expression of hOCT2 in the plasma membrane determined by biotinylation experiments and the cellular transport and toxicity of cisplatin measured by inductively coupled plasma mass spectrometry and a viability test, respectively. The transport characteristics and regulation of the wildtype and mutated hOCT2 were very similar. Interestingly, a higher affinity of hOCT2 Ala270Ser for creatinine was observed. Compared with hOCT2 wildtype, the plasma membrane expression, cisplatin transport, and cisplatin-associated toxicity of hOCT2 Ala270Ser were significantly lower. In conclusion, these findings suggest that Ala270Ser has subtle but important effects on hOCT2 function, which are probably difficult to detect in studies with patients.


Assuntos
Creatinina/metabolismo , Células HEK293/citologia , Transportador 2 de Cátion Orgânico/genética , Transportador 2 de Cátion Orgânico/metabolismo , Polimorfismo de Nucleotídeo Único , Alanina/metabolismo , Substituição de Aminoácidos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Células HEK293/efeitos dos fármacos , Células HEK293/metabolismo , Humanos , Serina/metabolismo
20.
SLAS Discov ; 24(9): 904-914, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31318583

RESUMO

Organic cation transporters (OCTs) are membrane proteins with relevant physiological (because they accept neurotransmitters as substrate) and pharmacological (because of their interaction with drugs) roles. The human OCTs hOCT1 (SLC22A1/hOCT1) and hOCT2 (SLC22A2/hOCT2) are highly expressed in hepatic (hOCT1) and in renal and neuronal tissue (hOCT2), suggesting a possible role in modulating neurotransmitter activity in the liver, kidney, and brain, and their clearance from the blood. Even though there are several data demonstrating that OCTs are regulated under various patho-physiological conditions, it remains largely unknown which proteins directly interact with OCTs and thereby influence their cellular processing, localization, and function. In this work, using a mating-based split-ubiquitin yeast two-hybrid system, we characterized the potential interactome of hOCT1 and 2. It became evident that these OCTs share some potential interaction partners, such as the tetraspanins CD63 and CD9. Moreover, we confirmed interaction of hOCT2 with CD9 by fluorescence-activated cell sorting coupled with Förster resonance energy transfer analysis. Together with other proteins, tetraspanins build "tetraspanins webs" in the plasma membrane, which are able to regulate cellular trafficking and compartmentalization of interacting partners. While CD63 was demonstrated to mediate the localization of the hOCT2 to the endosomal system, we show here that co-expression of hOCT2 and CD9 led to strong cell surface localization of the transporter. These data suggest that tetraspanins regulate the cellular localization and function of OCTs. Co-localization of CD9 and hOCT was confirmed in tissues endogenously expressing proteins, highlighting the potential biological relevance of this interaction.


Assuntos
Fator 1 de Transcrição de Octâmero/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Tetraspanina 29/metabolismo , Tetraspaninas/metabolismo , Animais , Membrana Celular/metabolismo , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa