Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 161(4)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39037132

RESUMO

Recent advances in attosecond science have made it increasingly important to develop stable, reliable, and accurate algorithms and methods to model the time evolution of atoms and molecules in intense laser fields. A key process in attosecond science is high-harmonic generation, which is challenging to model with fixed Gaussian basis sets, as it produces high-energy electrons, with a resulting rapidly varying and highly oscillatory wave function that extends over dozens of ångström. Recently, Rothe's method, where time evolution is rephrased as an optimization problem, has been applied to the one-dimensional Schrödinger equation. Here, we apply Rothe's method to the hydrogen wave function and demonstrate that thawed, complex-valued Gaussian wave packets with time-dependent width, center, and momentum parameters are able to reproduce spectra obtained from essentially exact grid calculations for high-harmonic generation with only 50-181 Gaussians for field strengths up to 5 × 1014 W/cm2. This paves the way for the inclusion of continuum contributions into real-time, time-dependent electronic-structure theory with Gaussian basis sets for strong fields and eventually accurate simulations of the time evolution of molecules without the Born-Oppenheimer approximation.

2.
J Chem Phys ; 158(11): 114116, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948808

RESUMO

The coupled cluster method is considered a gold standard in quantum chemistry, reliably giving energies that are exact within chemical accuracy (1.6 mhartree). However, even in the coupled cluster single-double (CCSD) approximation, where the cluster operator is truncated to include only single and double excitations, the method scales as O(N6) in the number of electrons, and the cluster operator needs to be solved for iteratively, increasing the computation time. Inspired by eigenvector continuation, we present here an algorithm making use of the Gaussian processes that provides an improved initial guess for the coupled cluster amplitudes. The cluster operator is written as a linear combination of sample cluster operators that are obtained at particular sample geometries. By reusing the cluster operators from previous calculations in that way, it is possible to obtain a start guess for the amplitudes that surpasses both MP2 guesses and "previous geometry"-guesses in terms of the number of necessary iterations. As this improved guess is very close to the exact cluster operator, it can be used directly to calculate the CCSD energy to chemical accuracy, giving approximate CCSD energies scaling as O(N5).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa