RESUMO
Borrelia burgdorferi was discovered to be the cause of Lyme disease in 1983, leading to seroassays. The 1994 serodiagnostic testing guidelines predated a full understanding of key B. burgdorferi antigens and have a number of shortcomings. These serologic tests cannot distinguish active infection, past infection, or reinfection. Reliable direct-detection methods for active B. burgdorferi infection have been lacking in the past but are needed and appear achievable. New approaches have effectively been applied to other emerging infections and show promise in direct detection of B. burgdorferi infections.
Assuntos
Borrelia burgdorferi , Doença de Lyme/diagnóstico , Doença de Lyme/microbiologia , Borrelia burgdorferi/genética , Testes Diagnósticos de Rotina , Genômica/métodos , Ensaios de Triagem em Larga Escala , Humanos , Reação em Cadeia da Polimerase , Testes SorológicosRESUMO
The cause of Lyme disease, Borrelia burgdorferi, was discovered in 1983. A 2-tiered testing protocol was established for serodiagnosis in 1994, involving an enzyme immunoassay (EIA) or indirect fluorescence antibody, followed (if reactive) by immunoglobulin M and immunoglobulin G Western immunoblots. These assays were prepared from whole-cell cultured B. burgdorferi, lacking key in vivo expressed antigens and expressing antigens that can bind non-Borrelia antibodies. Additional drawbacks, particular to the Western immunoblot component, include low sensitivity in early infection, technical complexity, and subjective interpretation when scored by visual examination. Nevertheless, 2-tiered testing with immunoblotting remains the benchmark for evaluation of new methods or approaches. Next-generation serologic assays, prepared with recombinant proteins or synthetic peptides, and alternative testing protocols, can now overcome or circumvent many of these past drawbacks. This article describes next-generation serodiagnostic testing for Lyme disease, focusing on methods that are currently available or near-at-hand.
Assuntos
Anticorpos Antibacterianos/sangue , Doença de Lyme/diagnóstico , Testes Sorológicos/métodos , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Borrelia burgdorferi/imunologia , Ensaio de Imunoadsorção Enzimática , Europa (Continente) , Humanos , Técnicas Imunoenzimáticas , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Proteínas Recombinantes , Sensibilidade e Especificidade , Testes Sorológicos/tendências , Estados UnidosRESUMO
In March 2017, a patient became febrile within 4 days after visiting a rustic conference center in Austin, Texas, USA, where Austin Public Health suspected an outbreak of tickborne relapsing fever a month earlier. Evaluation of a patient blood smear and molecular diagnostic assays identified Borrelia turicatae as the causative agent. We could not gain access to the property to collect ticks. Thus, we focused efforts at a nearby public park, <1 mile from the suspected exposure site. We trapped Ornithodoros turicata ticks from 2 locations in the park, and laboratory evaluation resulted in cultivation of 3 B. turicatae isolates. Multilocus sequencing of 3 chromosomal loci (flaB, rrs, and gyrB) indicated that the isolates were identical to those of B. turicatae 91E135 (a tick isolate) and BTE5EL (a human isolate). We identified the endemicity of O. turicata ticks and likely emergence of B. turicatae in this city.
Assuntos
Borrelia/classificação , Surtos de Doenças , Ornithodoros/microbiologia , Febre Recorrente/microbiologia , Infestações por Carrapato/epidemiologia , Animais , Técnicas de Tipagem Bacteriana , Borrelia/genética , DNA Girase/genética , DNA Ribossômico/genética , Flagelina/genética , Humanos , Tipagem de Sequências Multilocus , Febre Recorrente/epidemiologia , Febre Recorrente/transmissão , Texas/epidemiologia , Infestações por Carrapato/parasitologiaRESUMO
Standard two-tiered testing (STTT) is the recommended algorithm for laboratory diagnosis of Lyme disease (LD). Several limitations are associated with STTT that include low sensitivity in the early stages of disease, as well as technical complexity and subjectivity associated with second-tier immunoblotting; therefore, modified two-tiered testing (MTTT) algorithms that utilize two sequential first-tier tests and eliminate immunoblotting have been evaluated. Recently, a novel MTTT that uses a VlsE chemiluminescence immunoassay followed by a C6 enzyme immunoassay has been proposed. The purpose of this study was to evaluate the performance of the VlsE/C6 MTTT using well-characterized serum samples. Serum samples from the CDC Lyme Serum Repository were tested using three MTTTs, VlsE/C6, whole-cell sonicate (WCS)/C6, and WCS/VlsE, and three STTTs (immunoblotting preceded by three different first-tier assays: VlsE, C6, and WCS). Significant differences were not observed between the results of the MTTTs assessed; however, the VlsE/C6 MTTT resulted in the highest specificity (100%) when other diseases were tested and the lowest sensitivity (75%) for LD samples. Significant differences were present between the results for various MTTTs and STTTs evaluated. Specifically, all MTTTs resulted in higher sensitivities than the STTTs for all LD groups combined and were significantly more accurate (i.e., higher proportion of correct classifications) for this group, with the exception of the WCS/ViraStripe STTT. Additionally, when other diseases were tested, only the results of the VlsE/C6 MTTT differed significantly from those of the WCS/ViraStripe STTT, with the VlsE/C6 MTTT resulting in a 6.2% higher accuracy. Overall, the VlsE/C6 MTTT offers an additional laboratory testing algorithm for LD with equivalent or enhanced performance compared to that of the other MTTTs and STTTs evaluated in this study.
Assuntos
Algoritmos , Borrelia burgdorferi/imunologia , Imunoensaio/normas , Doença de Lyme/diagnóstico , Testes Sorológicos/normas , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Borrelia burgdorferi/isolamento & purificação , Humanos , Lipoproteínas/imunologia , Doença de Lyme/sangue , Sensibilidade e EspecificidadeRESUMO
In August 2015, a soldier returned from field exercises in Texas, USA, with nonspecific febrile illness. Culture and sequencing of spirochetes from peripheral blood diagnosed Borrelia turicatae infection. The patient recovered after receiving doxycycline. No illness occurred in asymptomatic soldiers potentially exposed to the vector tick and prophylactically given treatment.
Assuntos
Borrelia , Militares , Febre Recorrente/diagnóstico , Febre Recorrente/terapia , Adulto , Antibacterianos/uso terapêutico , Borrelia/classificação , Borrelia/genética , Borrelia/imunologia , Gerenciamento Clínico , Genoma Bacteriano , Humanos , Masculino , Análise de Sequência de DNA , Testes Sorológicos , Texas , Resultado do TratamentoRESUMO
The recommended laboratory diagnostic approach for Lyme disease is a standard two-tiered testing (STTT) algorithm where the first tier is typically an enzyme immunoassay (EIA) that if positive or equivocal is reflexed to Western immunoblotting as the second tier. bioMérieux manufactures one of the most commonly used first-tier EIAs in the United States, the combined IgM/IgG Vidas test (LYT). Recently, bioMérieux launched its dissociated first-tier tests, the Vidas Lyme IgM II (LYM) and IgG II (LYG) EIAs, which use purified recombinant test antigens and a different algorithm than STTT. The dissociated LYM/LYG EIAs were evaluated against the combined LYT EIA using samples from 471 well-characterized Lyme patients and controls. Statistical analyses were conducted to assess the performance of these EIAs as first-tier tests and when used in two-tiered algorithms, including a modified two-tiered testing (MTTT) approach where the second-tier test was a C6 EIA. Similar sensitivities and specificities were obtained for the two testing strategies (LYT versus LYM/LYG) when used as first-tier tests (sensitivity, 83 to 85%; specificity, 85 to 88%) with an observed agreement of 80%. Sensitivities of 68 to 69% and 76 to 77% and specificities of 97% and 98 to 99% resulted when the two EIA strategies were followed by Western immunoblotting and when used in an MTTT, respectively. The MTTT approach resulted in significantly higher sensitivities than did STTT. Overall, the LYM/LYG EIAs performed equivalently to the LYT EIA in test-to-test comparisons or as first-tier assays in STTT or MTTT with few exceptions.
Assuntos
Anticorpos Antibacterianos/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Doença de Lyme/diagnóstico , Testes Sorológicos/métodos , Humanos , Sensibilidade e Especificidade , Estados UnidosRESUMO
Fatal Lyme carditis caused by the spirochete Borrelia burgdorferi rarely is identified. Here, we describe the pathologic, immunohistochemical, and molecular findings of five case patients. These sudden cardiac deaths associated with Lyme carditis occurred from late summer to fall, ages ranged from young adult to late 40s, and four patients were men. Autopsy tissue samples were evaluated by light microscopy, Warthin-Starry stain, immunohistochemistry, and PCR for B. burgdorferi, and immunohistochemistry for complement components C4d and C9, CD3, CD79a, and decorin. Post-mortem blood was tested by serology. Interstitial lymphocytic pancarditis in a relatively characteristic road map distribution was present in all cases. Cardiomyocyte necrosis was minimal, T cells outnumbered B cells, plasma cells were prominent, and mild fibrosis was present. Spirochetes in the cardiac interstitium associated with collagen fibers and co-localized with decorin. Rare spirochetes were seen in the leptomeninges of two cases by immunohistochemistry. Spirochetes were not seen in other organs examined, and joint tissue was not available for evaluation. Although rare, sudden cardiac death caused by Lyme disease might be an under-recognized entity and is characterized by pancarditis and marked tropism of spirochetes for cardiac tissues.
Assuntos
Borrelia burgdorferi/isolamento & purificação , Morte Súbita Cardíaca/patologia , Doença de Lyme/patologia , Miocardite/patologia , Adulto , Autopsia , Feminino , Coração/microbiologia , Humanos , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Masculino , Reação em Cadeia da Polimerase em Tempo RealRESUMO
The current recommendation for the laboratory confirmation of Lyme disease is serology-based diagnostics. Specifically, a standardized two-tiered testing (STTT) algorithm is applied that utilizes a first-tier immunofluorescence assay or enzyme immunoassay (EIA) that, if the result is positive or equivocal, is followed by second-tier immunoblotting. Despite the standardization and performance achievements, STTT is considered technically complex and subjective, as well as insensitive for early acute infection. These issues have prompted development of novel algorithms and testing platforms. In this study, we evaluated the performance of several commonly used assays for STTT. Several modified two-tiered testing (MTTT) algorithms, including a 2-EIA algorithm and modified criteria for second-tier IgG immunoblots, were also evaluated. All tests were performed on sera from a recently available, well-defined archive of positive- and negative-control patients. Our study demonstrates differences in the results between individual first- and second-tier tests, although the overall agreement of the different STTT algorithms used was strong. In addition, the MTTT algorithm utilizing 2-EIAs was found to be equivalent to all STTT algorithms tested, with agreement ranging from 94 to 97%. The 2-EIA MTTT algorithm slightly enhanced sensitivity in early disease compared to the STTT algorithms evaluated. Furthermore, these data add to the mounting evidence that a 2-EIA-based MTTT algorithm, where immunoblotting is replaced by the C6 EIA, performs as well or better than STTT.
Assuntos
Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/normas , Doença de Lyme/diagnóstico , Padrões de Referência , Testes Sorológicos/métodos , Testes Sorológicos/normas , Humanos , N-Acetilglucosaminiltransferases , Sensibilidade e EspecificidadeRESUMO
Lyme borreliosis (LB) is a multisystem disease caused by spirochetes in the Borrelia burgdorferisensu lato (Bbsl) genospecies complex. We previously described a novel Bbsl genospecies (type strain MN14-1420T) that causes LB among patients with exposures to ticks in the upper midwestern USA. Patients infected with the novel Bbsl genospecies demonstrated higher levels of spirochetemia and somewhat differing clinical symptoms as compared with those infected with other Bbsl genospecies. The organism was detected from human specimens using PCR, microscopy, serology and culture. The taxonomic status was determined using an eight-housekeeping-gene (uvrA, rplB, recG, pyrG, pepX, clpX, clpA and nifS) multi-locus sequence analysis (MLSA) and comparison of 16S rRNA gene, flaB, rrf-rrl, ospC and oppA2 nucleotide sequences. Using a system threshold of 98.3 % similarity for delineation of Bbsl genospecies by MLSA, we demonstrated that the novel species is a member of the Bbsl genospecies complex, most closely related to B. burgdorferisensu stricto (94.7-94.9 % similarity). This same species was identified in Ixodes scapularis ticks collected in Minnesota and Wisconsin. This novel species, Borrelia mayonii sp. nov, is formally described here. The type strain, MN14-1420, is available through the Deutsche Sammlung von Mikroorganismen und Zelkulturen GmbH (DSM 102811) and the American Type Culture Collection (ATCC BAA-2743).
Assuntos
Grupo Borrelia Burgdorferi/classificação , Ixodes/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/isolamento & purificação , DNA Bacteriano/genética , Feminino , Genes Bacterianos , Humanos , Doença de Lyme , Meio-Oeste dos Estados Unidos , Minnesota , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , WisconsinRESUMO
BACKGROUND: Early Lyme disease patients often present to the clinic prior to developing a detectable antibody response to Borrelia burgdorferi, the etiologic agent. Thus, existing 2-tier serology-based assays yield low sensitivities (29%-40%) for early infection. The lack of an accurate laboratory test for early Lyme disease contributes to misconceptions about diagnosis and treatment, and underscores the need for new diagnostic approaches. METHODS: Retrospective serum samples from patients with early Lyme disease, other diseases, and healthy controls were analyzed for small molecule metabolites by liquid chromatography-mass spectrometry (LC-MS). A metabolomics data workflow was applied to select a biosignature for classifying early Lyme disease and non-Lyme disease patients. A statistical model of the biosignature was trained using the patients' LC-MS data, and subsequently applied as an experimental diagnostic tool with LC-MS data from additional patient sera. The accuracy of this method was compared with standard 2-tier serology. RESULTS: Metabolic biosignature development selected 95 molecular features that distinguished early Lyme disease patients from healthy controls. Statistical modeling reduced the biosignature to 44 molecular features, and correctly classified early Lyme disease patients and healthy controls with a sensitivity of 88% (84%-95%), and a specificity of 95% (90%-100%). Importantly, the metabolic biosignature correctly classified 77%-95% of the of serology negative Lyme disease patients. CONCLUSIONS: The data provide proof-of-concept that metabolic profiling for early Lyme disease can achieve significantly greater (P < .0001) diagnostic sensitivity than current 2-tier serology, while retaining high specificity.
Assuntos
Biomarcadores/sangue , Doença de Lyme/diagnóstico , Doença de Lyme/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Borrelia burgdorferi , Criança , Cromatografia Líquida , Feminino , Humanos , Doença de Lyme/epidemiologia , Masculino , Espectrometria de Massas , Metaboloma/fisiologia , Metabolômica , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos , Adulto JovemRESUMO
Serological assays and a two-tiered test algorithm are recommended for laboratory confirmation of Lyme disease. In the United States, the sensitivity of two-tiered testing using commercially available serology-based assays is dependent on the stage of infection and ranges from 30% in the early localized disease stage to near 100% in late-stage disease. Other variables, including subjectivity in reading Western blots, compliance with two-tiered recommendations, use of different first- and second-tier test combinations, and use of different test samples, all contribute to variation in two-tiered test performance. The availability and use of sample sets from well-characterized Lyme disease patients and controls are needed to better assess the performance of existing tests and for development of improved assays. To address this need, the Centers for Disease Control and Prevention and the National Institutes of Health prospectively collected sera from patients at all stages of Lyme disease, as well as healthy donors and patients with look-alike diseases. Patients and healthy controls were recruited using strict inclusion and exclusion criteria. Samples from all included patients were retrospectively characterized by two-tiered testing. The results from two-tiered testing corroborated the need for novel and improved diagnostics, particularly for laboratory diagnosis of earlier stages of infection. Furthermore, the two-tiered results provide a baseline with samples from well-characterized patients that can be used in comparing the sensitivity and specificity of novel diagnostics. Panels of sera and accompanying clinical and laboratory testing results are now available to Lyme disease serological test users and researchers developing novel tests.
Assuntos
Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/normas , Doença de Lyme/diagnóstico , Soro/imunologia , Manejo de Espécimes/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Sorológicos/métodos , Testes Sorológicos/normas , Estados Unidos , Adulto JovemRESUMO
BACKGROUND: The use of prototypic strains is common among laboratories studying infectious agents as it promotes consistency for data comparability among and between laboratories. Schu S4 is the prototypic virulent strain of Francisella tularensis and has been used extensively as such over the past six decades. Studies have demonstrated virulence differences among the two clinically relevant subspecies of F. tularensis, tularensis (type A) and holarctica (type B) and more recently between type A subpopulations (A1a, A1b and A2). Schu S4 belongs to the most virulent subspecies of F. tularensis, subspecies tularensis. METHODS: In this study, we investigated the relative virulence of Schu S4 in comparison to A1a, A1b, A2 and type B strains using a temperature-based murine model of infection. Mice were inoculated intradermally and a hypothermic drop point was used as a surrogate for death. Survival curves and the length of temperature phases were compared for all infections. Bacterial burdens were also compared between the most virulent type A subpopulation, A1b, and Schu S4 at drop point. RESULTS: Survival curve comparisons demonstrate that the Schu S4 strain used in this study resembles the virulence of type B strains, and is significantly less virulent than all other type A (A1a, A1b and A2) strains tested. Additionally, when bacterial burdens were compared between mice infected with Schu S4 or MA00-2987 (A1b) significantly higher burdens were present in the blood and spleen of mice infected with MA00-2987. CONCLUSIONS: The knowledge gained from using Schu S4 as a prototypic virulent strain has unquestionably advanced the field of tularemia research. The findings of this study, however, indicate that careful consideration of F. tularensis strain selection must occur when the overall virulence of the strain used could impact the outcome and interpretation of results.
Assuntos
Modelos Animais de Doenças , Francisella tularensis/classificação , Francisella tularensis/patogenicidade , Tularemia/microbiologia , Animais , Feminino , Francisella tularensis/isolamento & purificação , Humanos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , VirulênciaAssuntos
Babesiose/diagnóstico , Doença de Lyme/diagnóstico , Adulto , Idoso , Criança , Técnicas de Laboratório Clínico , Feminino , Humanos , Indiana , Laboratórios , Masculino , Pessoa de Meia-IdadeRESUMO
Yersinia pestis is the causative agent of plague, a fulminant disease that is often fatal without antimicrobial treatment. Plasmid (IncA/C)-mediated multidrug resistance in Y. pestis was reported in 1995 in Madagascar and has generated considerable public health concern, most recently because of the identification of IncA/C multidrug-resistant plasmids in other zoonotic pathogens. Here, we demonstrate no resistance in 392 Y. pestis isolates from 17 countries to eight antimicrobials used for treatment or prophylaxis of plague.
Assuntos
Antibacterianos/uso terapêutico , Peste/tratamento farmacológico , Yersinia pestis/genética , África , América , Animais , Ásia , Farmacorresistência Bacteriana , Humanos , Madagáscar , Testes de Sensibilidade Microbiana , Filogeografia , Peste/microbiologia , Peste/transmissão , Plasmídeos/genética , Saúde Pública , Sifonápteros , Yersinia pestis/isolamento & purificaçãoRESUMO
The utility of Etest for antimicrobial susceptibility testing of Yersinia pestis was evaluated in comparison with broth microdilution and disk diffusion for eight agents. Four laboratories tested 26 diverse strains and found Etest to be reliable for testing antimicrobial agents used to treat Y. pestis, except for chloramphenicol and trimethoprim-sulfamethoxazole. Disk diffusion testing is not recommended.
Assuntos
Antibacterianos/farmacologia , Yersinia pestis/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana/métodosRESUMO
Borrelia spirochetes are the causative agents of Lyme borreliosis (LB) and relapsing fever (RF). Despite the steady rise in infections and the identification of new species causing human illness over the last decade, isolation of borreliae in culture has become increasingly rare. A modified Barbour-Stoenner-Kelly (BSK) media formulation, BSK-R, was developed for isolation of the emerging RF pathogen, Borrelia miyamotoi. BSK-R is a diluted BSK-II derivative supplemented with Lebovitz's L-15, mouse and fetal calf serum. Decreasing the concentration of CMRL 1066 and other components was essential for growth of North American B. miyamotoi. Sixteen B. miyamotoi isolates, originating from Ixodes scapularis ticks, rodent and human blood collected in the eastern and upper midwestern United States, were isolated and propagated to densities > 108 spirochetes/mL. Growth of five other RF and ten different LB borreliae readily occurred in BSK-R. Additionally, primary culture recovery of 20 isolates of Borrelia hermsii, Borrelia turicatae, Borrelia burgdorferi and Borrelia mayonii was achieved in BSK-R using whole blood from infected patients. These data indicate this broadly encompassing borreliae media can aid in in vitro culture recovery of RF and LB spirochetes, including the direct isolation of new and emerging human pathogens.
Assuntos
Borrelia/isolamento & purificação , Ixodes/microbiologia , Doença de Lyme/microbiologia , Febre Recorrente/microbiologia , Animais , Borrelia/patogenicidade , Borrelia burgdorferi/isolamento & purificação , Borrelia burgdorferi/patogenicidade , Meios de Cultura , Humanos , Doença de Lyme/transmissão , Camundongos , Febre Recorrente/transmissão , Spirochaetales/isolamento & purificação , Spirochaetales/patogenicidadeRESUMO
BACKGROUND: Primary pneumonic plague is a rare but often fatal form of Yersinia pestis infection that results from direct inhalation of bacteria and is potentially transmissible from person to person. We describe a case of primary pneumonic plague in a wildlife biologist who was found deceased in his residence 1 week after conducting a necropsy on a mountain lion. METHODS: To determine cause of death, a postmortem examination was conducted, and friends and colleagues were interviewed. Physical evidence was reviewed, including specimens from the mountain lion and the biologist's medical chart, camera, and computer. Human and animal tissues were submitted for testing. Persons in close contact (within 2 meters) to the biologist after he had developed symptoms were identified and offered chemoprophylaxis. RESULTS: The biologist conducted the necropsy in his garage without the use of personal protective equipment. Three days later, he developed fever and hemoptysis and died approximately 6 days after exposure. Gross examination showed consolidation and hemorrhagic fluid in the lungs; no buboes were noted. Plague was diagnosed presumptively by polymerase chain reaction and confirmed by culture. Tissues from the mountain lion tested positive for Y. pestis, and isolates from the biologist and mountain lion were indistinguishable by pulsed-field gel electrophoresis. Among 49 contacts who received chemoprophylaxis, none developed symptoms consistent with plague. CONCLUSIONS: The biologist likely acquired pneumonic plague through inhalation of aerosols generated during postmortem examination of an infected mountain lion. Enhanced awareness of zoonotic diseases and appropriate use of personal protective equipment are needed for biologists and others who handle wildlife.
Assuntos
Exposição Ocupacional , Peste/diagnóstico , Puma/microbiologia , Yersinia pestis/isolamento & purificação , Adulto , Animais , Técnicas de Tipagem Bacteriana , Impressões Digitais de DNA , Eletroforese em Gel de Campo Pulsado , Febre/etiologia , Genótipo , Hemoptise/etiologia , Humanos , Pulmão/microbiologia , Pulmão/patologia , Epidemiologia Molecular , Peste/microbiologia , Peste/patologiaRESUMO
Plague seroprevalence was estimated in populations of pumas and bobcats in the western United States. High levels of exposure in plague-endemic regions indicate the need to consider the ecology and pathobiology of plague in nondomestic felid hosts to better understand the role of these species in disease persistence and transmission.
Assuntos
Lynx/microbiologia , Peste/transmissão , Puma/microbiologia , Yersinia pestis/isolamento & purificação , Animais , Anticorpos Antibacterianos/sangue , Colorado , Reservatórios de Doenças , Humanos , Estudos Soroepidemiológicos , Yersinia pestis/imunologiaRESUMO
BACKGROUND: A low genetic diversity in Francisella tularensis has been documented. Current DNA based genotyping methods for typing F. tularensis offer a limited and varying degree of subspecies, clade and strain level discrimination power. Whole genome sequencing is the most accurate and reliable method to identify, type and determine phylogenetic relationships among strains of a species. However, lower cost typing schemes are necessary in order to enable typing of hundreds or even thousands of isolates. RESULTS: We have generated a high-resolution phylogenetic tree from 40 Francisella isolates, including 13 F. tularensis subspecies holarctica (type B) strains, 26 F. tularensis subsp. tularensis (type A) strains and a single F. novicida strain. The tree was generated from global multi-strain single nucleotide polymorphism (SNP) data collected using a set of six Affymetrix GeneChip resequencing arrays with the non-repetitive portion of LVS (type B) as the reference sequence complemented with unique sequences of SCHU S4 (type A). Global SNP based phylogenetic clustering was able to resolve all non-related strains. The phylogenetic tree was used to guide the selection of informative SNPs specific to major nodes in the tree for development of a genotyping assay for identification of F. tularensis subspecies and clades. We designed and validated an assay that uses these SNPs to accurately genotype 39 additional F. tularensis strains as type A (A1, A2, A1a or A1b) or type B (B1 or B2). CONCLUSION: Whole-genome SNP based clustering was shown to accurately identify SNPs for differentiation of F. tularensis subspecies and clades, emphasizing the potential power and utility of this methodology for selecting SNPs for typing of F. tularensis to the strain level. Additionally, whole genome sequence based SNP information gained from a representative population of strains may be used to perform evolutionary or phylogenetic comparisons of strains, or selection of unique strains for whole-genome sequencing projects.
Assuntos
Hibridização Genômica Comparativa/métodos , Francisella tularensis/genética , Genoma Bacteriano , Filogenia , Polimorfismo de Nucleotídeo Único , Técnicas de Tipagem Bacteriana , Análise por Conglomerados , Biologia Computacional , DNA Bacteriano/genética , Francisella tularensis/classificação , Reação em Cadeia da Polimerase , Análise de Sequência de DNARESUMO
The A and B clones of Borrelia burgdorferi sensu stricto, distinguished by outer surface protein C (ospC) gene sequences, are commonly associated with disseminated Lyme disease. To resolve phylogenetic relationships among isolates, we sequenced 68 isolates from Europe and North America at 1 chromosomal locus (16S-23S ribosomal RNA spacer) and 3 plasmid loci (ospC,dbpA, and BBD14). The ospC-A clone appeared to be highly prevalent on both continents, and isolates of this clone were uniform in DNA sequences, which suggests a recent trans-oceanic migration. The genetic homogeneity of ospC-A isolates was confirmed by sequences at 6 additional chromosomal housekeeping loci (gap, alr, glpA, xylB, ackA, and tgt). In contrast, the ospC-B group consists of genotypes distinct to each continent, indicating geographic isolation. We conclude that the ospC-A clone has dispersed rapidly and widely in the recent past. The spread of the ospC-A clone may have contributed, and likely continues to contribute, to the rise of Lyme disease incidence.