Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 607(7918): 321-329, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35676479

RESUMO

Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.


Assuntos
Afeto , Destreza Motora , Vias Neurais , Doença de Parkinson , Tálamo , Animais , Modelos Animais de Doenças , Aprendizagem , Locomoção , Potenciação de Longa Duração , Camundongos , Neurônios/fisiologia , Núcleo Accumbens , Optogenética , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Doença de Parkinson/terapia , Putamen , Receptores Nicotínicos , Núcleo Subtalâmico , Sinapses , Tálamo/citologia , Tálamo/patologia
2.
Sci Adv ; 9(41): eadk3986, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824615

RESUMO

The mammalian brain is composed of many brain structures, each with its own ontogenetic and developmental history. We used single-nucleus RNA sequencing to sample over 2.4 million brain cells across 18 locations in the common marmoset, a New World monkey primed for genetic engineering, and examined gene expression patterns of cell types within and across brain structures. The adult transcriptomic identity of most neuronal types is shaped more by developmental origin than by neurotransmitter signaling repertoire. Quantitative mapping of GABAergic types with single-molecule FISH (smFISH) reveals that interneurons in the striatum and neocortex follow distinct spatial principles, and that lateral prefrontal and other higher-order cortical association areas are distinguished by high proportions of VIP+ neurons. We use cell type-specific enhancers to drive AAV-GFP and reconstruct the morphologies of molecularly resolved interneuron types in neocortex and striatum. Our analyses highlight how lineage, local context, and functional class contribute to the transcriptional identity and biodistribution of primate brain cell types.


Assuntos
Callithrix , Neocórtex , Animais , Neocórtex/fisiologia , Neurônios/fisiologia , Distribuição Tecidual
3.
Netw Neurosci ; 6(2): 499-527, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35733423

RESUMO

Astrocytes communicate bidirectionally with neurons, enhancing synaptic plasticity and promoting the synchronization of neuronal microcircuits. Despite recent advances in understanding neuron-astrocyte signaling, little is known about astrocytic modulation of neuronal activity at the population level, particularly in disease or following injury. We used high-speed calcium imaging of mixed cortical cultures in vitro to determine how population activity changes after disruption of glutamatergic signaling and mechanical injury. We constructed a multilayer network model of neuron-astrocyte connectivity, which captured distinct topology and response behavior from single-cell-type networks. mGluR5 inhibition decreased neuronal activity, but did not on its own disrupt functional connectivity or network topology. In contrast, injury increased the strength, clustering, and efficiency of neuronal but not astrocytic networks, an effect that was not observed in networks pretreated with mGluR5 inhibition. Comparison of spatial and functional connectivity revealed that functional connectivity is largely independent of spatial proximity at the microscale, but mechanical injury increased the spatial-functional correlation. Finally, we found that astrocyte segments of the same cell often belong to separate functional communities based on neuronal connectivity, suggesting that astrocyte segments function as independent entities. Our findings demonstrate the utility of multilayer network models for characterizing the multiscale connectivity of two distinct but functionally dependent cell populations.

4.
Nat Biomed Eng ; 6(9): 1057-1073, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36038771

RESUMO

Many crowded biomolecular structures in cells and tissues are inaccessible to labelling antibodies. To understand how proteins within these structures are arranged with nanoscale precision therefore requires that these structures be decrowded before labelling. Here we show that an iterative variant of expansion microscopy (the permeation of cells and tissues by a swellable hydrogel followed by isotropic hydrogel expansion, to allow for enhanced imaging resolution with ordinary microscopes) enables the imaging of nanostructures in expanded yet otherwise intact tissues at a resolution of about 20 nm. The method, which we named 'expansion revealing' and validated with DNA-probe-based super-resolution microscopy, involves gel-anchoring reagents and the embedding, expansion and re-embedding of the sample in homogeneous swellable hydrogels. Expansion revealing enabled us to use confocal microscopy to image the alignment of pre-synaptic calcium channels with post-synaptic scaffolding proteins in intact brain circuits, and to uncover periodic amyloid nanoclusters containing ion-channel proteins in brain tissue from a mouse model of Alzheimer's disease. Expansion revealing will enable the further discovery of previously unseen nanostructures within cells and tissues.


Assuntos
Microscopia , Nanoestruturas , Animais , Encéfalo/metabolismo , Canais de Cálcio/metabolismo , DNA/metabolismo , Hidrogéis , Camundongos , Microscopia/métodos , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa