Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697667

RESUMO

DDX3X regulates the translation of a subset of human transcripts containing complex 5' untranslated regions (5' UTRs). In this study we developed the helicase activity reporter for translation (HART) which uses DDX3X-sensitive 5' UTRs to measure DDX3X mediated translational activity in cells. To directly measure RNA structure in DDX3X dependent mRNAs, we used SHAPE-MaP to determine the secondary structures present in DDX3X-sensitive 5' UTRs and then employed HART to investigate how sequence alterations influence DDX3X-sensitivity. Additionally, we identified residues 38-44 as potential mediators of DDX3X's interaction with the translational machinery. HART revealed that both DDX3X's association with the translational machinery as well as its helicase activity are required for its function in promoting the translation of DDX3X sensitive 5' UTRs. These findings suggest DDX3X plays a crucial role regulating translation through its interaction with the translational machinery during ribosome scanning, and establish the HART reporter as a robust, lentivirally-encoded, colorimetric measurement of DDX3X-dependent translation in cells.

2.
ACS Cent Sci ; 10(5): 1084-1093, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38799674

RESUMO

Antiviral nucleoside analogues (e.g., Molnupiravir, Remdesivir) played key roles in the treatment of COVID-19 by targeting SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). The nucleoside of Molnupiravir, N4-hydroxycytidine (NHC), exists in two tautomeric forms that pair either with G or A within the RdRp active site, causing an accumulation of viral RNA mutations during replication. Detailed insights into the tautomeric states within base pairs and the structural influence of NHC in RNA are still missing. In this study, we investigate the properties of NHC:G and NHC:A base pairs in a self-complementary RNA duplex by UV thermal melting and NMR spectroscopy using atom-specifically 15N-labeled versions of NHC that were incorporated into oligonucleotides by solid-phase synthesis. NMR analysis revealed that NHC forms a Watson-Crick base pair with G via its amino form, whereas two equally populated conformations were detected for the NHC:A base pair: a weakly hydrogen-bonded Watson-Crick base pair with NHC in the imino form and another conformation with A shifted toward the minor groove. Moreover, we found a variable influence of NHC:G and NHC:A base pairs on the neighboring duplex environment. This study provides conclusive experimental evidence for the existence of two tautomeric forms of NHC within RNA base pairs.

3.
Nat Struct Mol Biol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806694

RESUMO

The superfamily 2 helicase XPD is a central component of the general transcription factor II H (TFIIH), which is essential for transcription and nucleotide excision DNA repair (NER). Within these two processes, the helicase function of XPD is vital for NER but not for transcription initiation, where XPD acts only as a scaffold for other factors. Using cryo-EM, we deciphered one of the most enigmatic steps in XPD helicase action: the active separation of double-stranded DNA (dsDNA) and its stalling upon approaching a DNA interstrand cross-link, a highly toxic form of DNA damage. The structure shows how dsDNA is separated and reveals a highly unusual involvement of the Arch domain in active dsDNA separation. Combined with mutagenesis and biochemical analyses, we identified distinct functional regions important for helicase activity. Surprisingly, those areas also affect core TFIIH translocase activity, revealing a yet unencountered function of XPD within the TFIIH scaffold. In summary, our data provide a universal basis for NER bubble formation, XPD damage verification and XPG incision.

4.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745530

RESUMO

DDX3X regulates the translation of a subset of human transcripts containing complex 5' untranslated regions (5' UTRs). In this study we developed the helicase activity reporter for translation (HART) which uses DDX3X-sensitive 5' UTRs to measure DDX3X mediated translational activity in cells. To dissect the structural underpinnings of DDX3X dependent translation, we first used SHAPE-MaP to determine the secondary structures present in DDX3X-sensitive 5' UTRs and then employed HART to investigate how their perturbation impacts DDX3X-sensitivity. Additionally, we identified residues 38-44 as potential mediators of DDX3X's interaction with the translational machinery. HART revealed that both DDX3X's association with the ribosome complex as well as its helicase activity are required for its function in promoting the translation of DDX3X-sensitive 5' UTRs. These findings suggest DDX3X plays a crucial role regulating translation through its interaction with the translational machinery during ribosome scanning, and establish the HART reporter as a robust, lentivirally encoded measurement of DDX3X-dependent translation in cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa