Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Clin Transl Sci ; 17(2): e13724, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38407540

RESUMO

LYS006 is a novel, highly potent and selective, new-generation leukotriene A4 hydrolase (LTA4H) inhibitor in clinical development for the treatment of neutrophil-driven inflammatory diseases. We describe the complex pharmacokinetic to pharmacodynamic (PD) relationship in blood, plasma, and skin of LYS006-treated nonclinical species and healthy human participants. In a randomized first in human study, participants were exposed to single ascending doses up to 100 mg and multiple ascending doses up to 80 mg b.i.d.. LYS006 showed rapid absorption, overall dose proportional plasma exposure and nonlinear blood to plasma distribution caused by saturable target binding. The compound efficiently inhibited LTB4 production in human blood and skin blister cells, leading to greater than 90% predose target inhibition from day 1 after treatment initiation at doses of 20 mg b.i.d. and above. Slow re-distribution from target expressing cells resulted in a long terminal half-life and a long-lasting PD effect in ex vivo stimulated blood and skin cells despite low plasma exposures. LYS006 was well-tolerated and demonstrated a favorable safety profile up to highest doses tested, without any dose-limiting toxicity. This supported further clinical development in phase II studies in predominantly neutrophil-driven inflammatory conditions, such as hidradenitis suppurativa, inflammatory acne, and ulcerative colitis.


Assuntos
Epóxido Hidrolases , Plasma , Humanos , Neutrófilos , Pele
2.
Clin Transl Sci ; 15(1): 118-129, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34432364

RESUMO

Remibrutinib, a novel oral Bruton's Tyrosine Kinase inhibitor (BTKi) is highly selective for BTK, potentially mitigating the side effects of other BTKis. Enzyme phenotyping identified CYP3A4 to be the predominant elimination pathway of remibrutinib. The impact of concomitant treatment with CYP3A4 inhibitors, grapefruit juice and ritonavir (RTV), was investigated in this study in combination with an intravenous microtracer approach. Pharmacokinetic (PK) parameters, including the fraction absorbed, the fractions escaping intestinal and hepatic first-pass metabolism, the absolute bioavailability, systemic clearance, volume of distribution at steady-state, and the fraction metabolized via CYP3A4 were evaluated. Oral remibrutinib exposure increased in the presence of RTV 4.27-fold, suggesting that remibrutinib is not a sensitive CYP3A4 substrate. The rich PK dataset supported the building of a robust physiologically-based pharmacokinetic (PBPK) model, which well-described the therapeutic dose range of 25-100 mg. Simulations of untested scenarios revealed an absence of drug-drug interaction (DDI) risk between remibrutinib and the weak CYP3A4 inhibitor fluvoxamine (area under the concentration-time curve ratio [AUCR] <1.25), and a moderate effect with the CYP3A4 inhibitor erythromycin (AUCR: 2.71). Predictions with the moderate and strong CYP3A4 inducers efavirenz and rifampicin, suggested a distinct remibrutinib exposure decrease of 64% and 89%. Oral bioavailability of remibrutinib was 34%. The inclusion of an intravenous microtracer allowed the determination of all relevant remibrutinib PK parameters, which facilitated construction of the PBPK model. This will provide guidance on the selection or restriction of comedications and prediction of DDI risks.


Assuntos
Inibidores do Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/farmacocinética , Algoritmos , Disponibilidade Biológica , Ensaios Clínicos como Assunto , Humanos , Fígado/enzimologia , Fígado/metabolismo , Taxa de Depuração Metabólica , Proteínas Tirosina Quinases/administração & dosagem , Segurança
3.
Eur J Pharm Sci ; 172: 106155, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247543

RESUMO

PURPOSE: Pharmacokinetic drug-drug interactions (DDIs) are investigated to ensure safety for patients receiving concomitant medications. Here, we present a strategy to characterise the DDI potential of remibrutinib, as an inhibitor of drug-metabolising enzymes and drug transporters, and as an inducer. Initial in vitro studies were performed, followed by a biomarker-based assessment of induction in a first in human study, concluded by a clinical study to verify initial results. Remibrutinib is a covalent inhibitor of Bruton's Tyrosine kinase (BTKi) carrying a reactive acrylamide moiety (warhead), thus the potential contribution of covalent binding (off-target) to observed interactions was investigated as this could lead to prolonged and more potent drug interactions. METHODS: DDI assessment was focused on the putative inhibition of key metabolic enzymes (Cytochrome P450, CYP), drug transporters and a potential effect on oral contraceptives (OC) by induction of enzymes that are involved in their clearance (CYP3A4). The impact of covalent binding was assessed by synthesising an identical reference molecule but with an inactivated warhead. RESULTS: An interaction potential of limited clinical relevance was revealed for remibrutinib for CYP enzymes and drug transporters. The reactive warhead of remibrutinib had no impact on CYP enzyme and transporter inhibition, including time-dependent inhibition of CYP3A4, but may increase the induction potential of remibrutinib. CONCLUSIONS: Observed inhibition of metabolic enzymes indicated that remibrutinib is a weak inhibitor of CYP3A4 and CYP2C9 and is not a clinically relevant inhibitor of uptake and efflux transporters, except for intestinal P-glycoprotein and breast cancer resistance protein inhibition. OC may be safely administered and are effective when given with pharmacologically relevant doses of remibrutinib.


Assuntos
Proteínas de Neoplasias , Inibidores de Proteínas Quinases , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Humanos , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacocinética
4.
Clin Transl Sci ; 14(5): 1756-1768, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33834628

RESUMO

Safe and effective new oral therapies for autoimmune, allergic, and inflammatory conditions remain a significant therapeutic need. Here, we investigate the human pharmacokinetics, pharmacodynamics (PDs), and safety of the selective, covalent Bruton's tyrosine kinase (BTK) inhibitor, remibrutinib. Study objectives were explored in randomized single and multiple ascending dose (SAD and MAD, respectively) cohorts with daily doses up to 600 mg, and a crossover food effect (FE) cohort, in adult healthy subjects without (SAD [n =80]/FE [n =12]) or with asymptomatic atopic diathesis (MAD [n =64]). A single oral dose of remibrutinib (0.5-600 mg) was rapidly absorbed (time to maximum concentration = 0.5 h-1.25 h) with an apparent blood clearance of 280-560 L/h and apparent volume of distribution of 400-15,000 L. With multiple doses (q.d. and b.i.d.), no pronounced accumulation of remibrutinib was detected (mean residence time was <3 h). Food intake showed no clinically relevant effect on remibrutinib exposure suggesting no need for dose adaptation. With remibrutinib doses greater than or equal to 30 mg, blood BTK occupancy was greater than 95% for at least 24 h (SAD). With MAD, remibrutinib reached near complete blood BTK occupancy at day 12 predose with greater than or equal to 10 mg q.d. Near complete basophil or skin prick test (SPT) inhibition at day 12 predose was achieved at greater than or equal to 50 mg q.d. for CD63 and at greater than or equal to 100 mg q.d. for SPT. Remibrutinib was well-tolerated at all doses without any dose-limiting toxicity. Remibrutinib showed encouraging blood and skin PDs with a favorable safety profile, supporting further development for diseases driven by mast cells, basophils, and B-cells, such as chronic spontaneous urticaria, allergic asthma, or Sjögren's syndrome.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Interações Alimento-Droga , Fatores Imunológicos , Inibidores de Proteínas Quinases , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Administração Oral , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Estudos Cross-Over , Relação Dose-Resposta a Droga , Voluntários Saudáveis , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/farmacocinética , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Testes Cutâneos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa