Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Physiol Rev ; 103(4): 2877-2925, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290118

RESUMO

Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Memória , Camundongos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Memória/fisiologia , Potenciação de Longa Duração/fisiologia , Aprendizagem , Hipocampo/fisiologia
2.
Nature ; 621(7977): 146-153, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648853

RESUMO

Learning and memory are thought to require hippocampal long-term potentiation (LTP), and one of the few central dogmas of molecular neuroscience that has stood undisputed for more than three decades is that LTP induction requires enzymatic activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII)1-3. However, as we delineate here, the experimental evidence is surprisingly far from conclusive. All previous interventions inhibiting enzymatic CaMKII activity and LTP4-8 also interfere with structural CaMKII roles, in particular binding to the NMDA-type glutamate receptor subunit GluN2B9-14. Thus, we here characterized and utilized complementary sets of new opto-/pharmaco-genetic tools to distinguish between enzymatic and structural CaMKII functions. Several independent lines of evidence demonstrated LTP induction by a structural function of CaMKII rather than by its enzymatic activity. The sole contribution of kinase activity was autoregulation of this structural role via T286 autophosphorylation, which explains why this distinction has been elusive for decades. Directly initiating the structural function in a manner that circumvented this T286 role was sufficient to elicit robust LTP, even when enzymatic CaMKII activity was blocked.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Potenciação de Longa Duração , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Optogenética , Fosforilação , Ligação Proteica
3.
Am J Hum Genet ; 111(2): 364-382, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272033

RESUMO

The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes-CAMK2A, CAMK2B, CAMK2G, and CAMK2D-of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now. Here we show that CAMK2D plays an important role in neurodevelopment not only in mice but also in humans. We identified eight individuals harboring heterozygous variants in CAMK2D who display symptoms of intellectual disability, delayed speech, behavioral problems, and dilated cardiomyopathy. The majority of the variants tested lead to a gain of function (GoF), which appears to cause both neurological problems and dilated cardiomyopathy. In contrast, loss-of-function (LoF) variants appear to induce only neurological symptoms. Together, we describe a cohort of individuals with neurodevelopmental disorders and cardiac anomalies, harboring pathogenic variants in CAMK2D, confirming an important role for the CAMK2D isozyme in both heart and brain function.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cardiomiopatia Dilatada , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Coração , Transtornos do Neurodesenvolvimento/genética
4.
Proc Natl Acad Sci U S A ; 121(26): e2402783121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889145

RESUMO

Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) plays a critical role in long-term potentiation (LTP), a well-established model for learning and memory through the enhancement of synaptic transmission. Biochemical studies indicate that CaMKII catalyzes a phosphotransferase (kinase) reaction of both itself (autophosphorylation) and of multiple downstream target proteins. However, whether either type of phosphorylation plays any role in the synaptic enhancing action of CaMKII remains hotly contested. We have designed a series of experiments to define the minimal requirements for the synaptic enhancement by CaMKII. We find that autophosphorylation of T286 and further binding of CaMKII to the GluN2B subunit are required both for initiating LTP and for its maintenance (synaptic memory). Once bound to the NMDA receptor, the synaptic action of CaMKII occurs in the absence of target protein phosphorylation. Thus, autophosphorylation and binding to the GluN2B subunit are the only two requirements for CaMKII in synaptic memory.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Potenciação de Longa Duração , Memória , Receptores de N-Metil-D-Aspartato , Sinapses , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fosforilação , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Sinapses/metabolismo , Ratos , Camundongos
5.
Cell ; 146(5): 732-45, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21884935

RESUMO

Calcium/calmodulin-dependent kinase II (CaMKII) forms a highly conserved dodecameric assembly that is sensitive to the frequency of calcium pulse trains. Neither the structure of the dodecameric assembly nor how it regulates CaMKII are known. We present the crystal structure of an autoinhibited full-length human CaMKII holoenzyme, revealing an unexpected compact arrangement of kinase domains docked against a central hub, with the calmodulin-binding sites completely inaccessible. We show that this compact docking is important for the autoinhibition of the kinase domains and for setting the calcium response of the holoenzyme. Comparison of CaMKII isoforms, which differ in the length of the linker between the kinase domain and the hub, demonstrates that these interactions can be strengthened or weakened by changes in linker length. This equilibrium between autoinhibited states provides a simple mechanism for tuning the calcium response without changes in either the hub or the kinase domains.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Holoenzimas/química , Holoenzimas/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
6.
Biophys J ; 123(7): 824-838, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38414237

RESUMO

The binding of calcium/calmodulin (CAM) to calcium/calmodulin-dependent protein kinase II (CaMKII) initiates an ATP-driven cascade that triggers CaMKII autophosphorylation. The autophosphorylation in turn increases the CaMKII affinity for CAM. Here, we studied the ATP dependence of CAM association with the actin-binding CaMKIIß isoform using single-molecule total internal reflection fluorescence microscopy. Rhodamine-CAM associations/dissociations to surface-immobilized Venus-CaMKIIß were resolved with 0.5 s resolution from video records, batch-processed with a custom algorithm. CAM occupancy was determined simultaneously with spot-photobleaching measurement of CaMKII holoenzyme stoichiometry. We show the ATP-dependent increase of the CAM association requires dimer formation for both the α and ß isoforms. The study of mutant ß holoenzymes revealed that the ATP-dependent increase in CAM affinity results in two distinct states. The phosphorylation-defective (T287.306-307A) holoenzyme resides only in the low-affinity state. CAM association is further reduced in the T287A holoenzyme relative to T287.306-307A. In the absence of ATP, the affinity of CAM for the T287.306-307A mutant and the wild-type monomer are comparable. The affinity of the ATP-binding impaired (K43R) mutant is even weaker. In ATP, the K43R holoenzyme resides in the low-affinity state. The phosphomimetic mutant (T287D) resides only in a 1000-fold higher-affinity state, with mean CAM occupancy of more than half of the 14-mer holoenzyme stoichiometry in picomolar CAM. ATP promotes T287D holoenzyme disassembly but does not elevate CAM occupancy. Single Poisson distributions characterized the ATP-dependent CAM occupancy of mutant holoenzymes. In contrast, the CAM occupancy of the wild-type population had a two-state distribution with both low- and high-affinity states represented. The low-affinity state was the dominant state, a result different from published in vitro assays. Differences in assay conditions can alter the balance between activating and inhibitory autophosphorylation. Bound ATP could be sufficient for CaMKII structural function, while antagonistic autophosphorylations may tune CaMKII kinase-regulated action-potential frequency decoding in vivo.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Calmodulina , Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Cálcio/metabolismo , Imagem Individual de Molécula , Trifosfato de Adenosina/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Fosforilação
7.
PLoS Comput Biol ; 15(5): e1006796, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31150387

RESUMO

The calcium calmodulin-dependent protein kinase II (CaMKII) is a dodecameric holoenzyme important for encoding memory. Its activation, triggered by binding of calcium-calmodulin, persists autonomously after calmodulin dissociation. One (receiver) kinase captures and subsequently phosphorylates the regulatory domain peptide of a donor kinase forming a chained dimer as the first stage of autonomous activation. Protein dynamics simulations examined the conformational changes triggered by dimer formation and phosphorylation, aimed to provide a molecular rationale for human mutations that result in learning disabilities. Ensembles generated from X-ray crystal structures were characterized by network centrality and community analysis. Mutual information related collective motions to local fragment dynamics encoded with a structural alphabet. Implicit solvent tCONCOORD conformational ensembles revealed the dynamic architecture of inactive kinase domains was co-opted in the activated dimer but the network hub shifted from the nucleotide binding cleft to the captured peptide. Explicit solvent molecular dynamics (MD) showed nucleotide and substrate binding determinants formed coupled nodes in long-range signal relays between regulatory peptides in the dimer. Strain in the extended captured peptide was balanced by reduced flexibility of the receiver kinase C-lobe core. The relays were organized around a hydrophobic patch between the captured peptide and a key binding helix. The human mutations aligned along the relays. Thus, these mutations could disrupt the allosteric network alternatively, or in addition, to altered binding affinities. Non-binding protein sectors distant from the binding sites mediated the allosteric signalling; providing possible targets for inhibitor design. Phosphorylation of the peptide modulated the dielectric of its binding pocket to strengthen the patch, non-binding sectors, domain interface and temporal correlations between parallel relays. These results provide the molecular details underlying the reported positive kinase cooperativity to enrich the discussion on how autonomous activation by phosphorylation leads to long-term behavioural effects.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/ultraestrutura , Animais , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/metabolismo , Humanos , Simulação de Dinâmica Molecular , Fosforilação/fisiologia , Ligação Proteica , Conformação Proteica , Transdução de Sinais
8.
J Mol Cell Cardiol ; 115: 73-81, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29294328

RESUMO

OBJECTIVE: Pathologically increased activity of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the associated Ca2+-leak from the sarcoplasmic reticulum are recognized to be important novel pharmacotherapeutic targets in heart failure and cardiac arrhythmias. However, CaMKII-inhibitory compounds for therapeutic use are still lacking. We now report on the cellular and molecular effects of a novel pyrimidine-based CaMKII inhibitor developed towards clinical use. METHODS AND RESULTS: Our findings demonstrate that AS105 is a high-affinity ATP-competitive CaMKII-inhibitor that by its mode of action is also effective against autophosphorylated CaMKII (in contrast to the commonly used allosteric CaMKII-inhibitor KN-93). In isolated atrial cardiomyocytes from human donors and ventricular myocytes from CaMKIIδC-overexpressing mice with heart failure, AS105 effectively reduced diastolic SR Ca2+ leak by 38% to 65% as measured by Ca2+-sparks or tetracaine-sensitive shift in [Ca2+]i. Consistent with this, we found that AS105 suppressed arrhythmogenic spontaneous cardiomyocyte Ca2+-release (by 53%). Also, the ability of the SR to accumulate Ca2+ was enhanced by AS105, as indicated by improved post-rest potentiation of Ca2+-transient amplitudes and increased SR Ca2+-content in the murine cells. Accordingly, these cells had improved systolic Ca2+-transient amplitudes and contractility during basal stimulation. Importantly, CaMKII inhibition did not compromise systolic fractional Ca2+-release, diastolic SR Ca2+-reuptake via SERCA2a or Ca2+-extrusion via NCX. CONCLUSION: AS105 is a novel, highly potent ATP-competitive CaMKII inhibitor. In vitro, it effectively reduced SR Ca2+-leak, thus improving SR Ca2+-accumulation and reducing cellular arrhythmogenic correlates, without negatively influencing excitation-contraction coupling. These findings further validate CaMKII as a key target in cardiovascular disease, implicated by genetic, allosteric inhibitors, and pseudo-substrate inhibitors.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Acoplamento Excitação-Contração/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
9.
Hum Mutat ; 39(12): 2008-2024, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30184290

RESUMO

The abundantly expressed calcium/calmodulin-dependent protein kinase II (CAMK2), alpha (CAMK2A), and beta (CAMK2B) isoforms are essential for learning and memory formation. Recently, a de novo candidate mutation (p.Arg292Pro) in the gamma isoform of CAMK2 (CAMK2G) was identified in a patient with severe intellectual disability (ID), but the mechanism(s) by which this mutation causes ID is unknown. Here, we identified a second, unrelated individual, with a de novo CAMK2G p.Arg292Pro mutation, and used in vivo and in vitro assays to assess the impact of this mutation on CAMK2G and neuronal function. We found that knockdown of CAMK2G results in inappropriate precocious neuronal maturation. We further found that the CAMK2G p.Arg292Pro mutation acts as a highly pathogenic gain-of-function mutation, leading to increased phosphotransferase activity and impaired neuronal maturation as well as impaired targeting of the nuclear CAMK2G isoform. Silencing the catalytic site of the CAMK2G p.Arg292Pro protein reversed the pathogenic effect of the p.Arg292Pro mutation on neuronal maturation, without rescuing its nuclear targeting. Taken together, our results reveal an indispensable function of CAMK2G in neurodevelopment and indicate that the CAMK2G p.Arg292Pro protein acts as a pathogenic gain-of-function mutation, through constitutive activity toward cytosolic targets, rather than impaired targeting to the nucleus.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mutação com Ganho de Função , Deficiência Intelectual/genética , Substituição de Aminoácidos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Domínio Catalítico , Células Cultivadas , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Deficiência Intelectual/metabolismo , Masculino , Camundongos
10.
Nat Methods ; 8(8): 691-6, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743460

RESUMO

The protein ubiquitin is an important post-translational modifier that regulates a wide variety of biological processes. In cells, ubiquitin is apportioned among distinct pools, which include a variety of free and conjugated species. Although maintenance of a dynamic and complex equilibrium among ubiquitin pools is crucial for cell survival, the tools necessary to quantify each cellular ubiquitin pool have been limited. We have developed a quantitative mass spectrometry approach to measure cellular concentrations of ubiquitin species using isotope-labeled protein standards and applied it to characterize ubiquitin pools in cells and tissues. Our method is convenient, adaptable and should be a valuable tool to facilitate our understanding of this important signaling molecule.


Assuntos
Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Frações Subcelulares/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Estados Unidos
11.
Ann Neurol ; 71(5): 601-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22473675

RESUMO

Cerebrospinal fluid samples collected from children during initial presentation of central nervous system inflammation, who may or may not subsequently be diagnosed as having multiple sclerosis (MS), were subjected to large-scale proteomics screening. Unexpectedly, major compact myelin membrane proteins typically implicated in MS were not detected. However, multiple molecules that localize to the node of Ranvier and the surrounding axoglial apparatus membrane were implicated, indicating perturbed axon-glial interactions in those children destined for diagnosis of MS.


Assuntos
Axônios/metabolismo , Biomarcadores/líquido cefalorraquidiano , Esclerose Múltipla/líquido cefalorraquidiano , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Neuroglia/metabolismo , Autoantígenos/líquido cefalorraquidiano , Axônios/patologia , Criança , Diagnóstico Precoce , Feminino , Humanos , Immunoblotting , Masculino , Espectrometria de Massas , Esclerose Múltipla/patologia , Proteínas da Mielina/líquido cefalorraquidiano , Neuroglia/patologia , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia
12.
Nature ; 448(7154): 704-8, 2007 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-17687326

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by expansion of CAG triplet repeats in the huntingtin (HTT) gene (also called HD) and characterized by accumulation of aggregated fragments of polyglutamine-expanded HTT protein in affected neurons. Abnormal enrichment of HD inclusion bodies with ubiquitin, a diagnostic characteristic of HD and many other neurodegenerative disorders including Alzheimer's and Parkinson's diseases, has suggested that dysfunction in ubiquitin metabolism may contribute to the pathogenesis of these diseases. Because modification of proteins with polyubiquitin chains regulates many essential cellular processes including protein degradation, cell cycle, transcription, DNA repair and membrane trafficking, disrupted ubiquitin signalling is likely to have broad consequences for neuronal function and survival. Although ubiquitin-dependent protein degradation is impaired in cell-culture models of HD and of other neurodegenerative diseases, it has not been possible to evaluate the function of the ubiquitin-proteasome system (UPS) in HD patients or in animal models of the disease, and a functional role for UPS impairment in neurodegenerative disease pathogenesis remains controversial. Here we exploit a mass-spectrometry-based method to quantify polyubiquitin chains and demonstrate that the abundance of these chains is a faithful endogenous biomarker of UPS function. Lys 48-linked polyubiquitin chains accumulate early in pathogenesis in brains from the R6/2 transgenic mouse model of HD, from a knock-in model of HD and from human HD patients, establishing that UPS dysfunction is a consistent feature of HD pathology. Lys 63- and Lys 11-linked polyubiquitin chains, which are not typically associated with proteasomal targeting, also accumulate in the R6/2 mouse brain. Thus, HD is linked to global changes in the ubiquitin system to a much greater extent than previously recognized.


Assuntos
Doença de Huntington/metabolismo , Ubiquitina/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Doença de Huntington/patologia , Corpos de Inclusão/metabolismo , Lisina/metabolismo , Camundongos , Camundongos Transgênicos , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
13.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662326

RESUMO

CaMKII plays a critical role in long-term potentiation (LTP), a well-established model for learning and memory through the enhancement of synaptic transmission. Biochemical studies indicate that CaMKII catalyzes a phosphotransferase (kinase) reaction of both itself (autophosphorylation) and of multiple downstream target proteins. However, whether either type of phosphorylation plays any role in the synaptic enhancing action of CaMKII remains hotly contested. We have designed a series of experiments to define the minimal requirements for the synaptic enhancement by CaMKII. We find that autophosphorylation of T286 and further binding of CaMKII to the GluN2B subunit are required both for initiating LTP and for its maintenance (synaptic memory). Once bound to the NMDA receptor, the synaptic action of CaMKII occurs in the absence of kinase activity. Thus, autophosphorylation, together with binding to the GluN2B subunit, are the only two requirements for CaMKII in synaptic memory.

14.
Front Pharmacol ; 13: 794008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620293

RESUMO

Mutations in the genes encoding calcium/calmodulin dependent protein kinase II (CAMK2) isoforms cause a newly recognized neurodevelopmental disorder (ND), for which the full clinical spectrum has yet to be described. Here we report the detailed description of a child with a de novo gain of function (GoF) mutation in the gene Ca/Calmodulin dependent protein kinase 2 beta (CAMK2B c.328G > A p.Glu110Lys) who presents with developmental delay and periodic neuropsychiatric episodes. The episodes manifest as encephalopathy with behavioral changes, headache, loss of language and loss of complex motor coordination. Additionally, we provide an overview of the effect of different medications used to try to alleviate the symptoms. We show that medications effective for mitigating the child's neuropsychiatric symptoms may have done so by decreasing CAMK2 activity and associated calcium signaling; whereas medications that appeared to worsen the symptoms may have done so by increasing CAMK2 activity and associated calcium signaling. We hypothesize that by classifying CAMK2 mutations as "gain of function" or "loss of function" based on CAMK2 catalytic activity, we may be able to guide personalized empiric treatment regimens tailored to specific CAMK2 mutations. In the absence of sufficient patients for traditional randomized controlled trials to establish therapeutic efficacy, this approach may provide a rational approach to empiric therapy for physicians treating patients with dysregulated CAMK2 and associated calcium signaling.

15.
J Cell Biol ; 171(3): 537-47, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16275756

RESUMO

Ca2+-dependent facilitation (CDF) of voltage-gated calcium current is a powerful mechanism for up-regulation of Ca2+ influx during repeated membrane depolarization. CDF of L-type Ca2+ channels (Ca(v)1.2) contributes to the positive force-frequency effect in the heart and is believed to involve the activation of Ca2+/calmodulin-dependent kinase II (CaMKII). How CaMKII is activated and what its substrates are have not yet been determined. We show that the pore-forming subunit alpha(1C) (Ca(v)alpha1.2) is a CaMKII substrate and that CaMKII interaction with the COOH terminus of alpha1C is essential for CDF of L-type channels. Ca2+ influx triggers distinct features of CaMKII targeting and activity. After Ca2+-induced targeting to alpha1C, CaMKII becomes tightly tethered to the channel, even after calcium returns to normal levels. In contrast, activity of the tethered CaMKII remains fully Ca2+/CaM dependent, explaining its ability to operate as a calcium spike frequency detector. These findings clarify the molecular basis of CDF and demonstrate a novel enzymatic mechanism by which ion channel gating can be modulated by activity.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Sinalização do Cálcio/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Ativação do Canal Iônico/fisiologia , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Estimulação Elétrica , Ativação Enzimática , Feminino , Holoenzimas/fisiologia , Técnicas In Vitro , Modelos Biológicos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Fosforilação , Estrutura Terciária de Proteína , Subunidades Proteicas/fisiologia , Coelhos , Ratos , Xenopus laevis
16.
Elife ; 92020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32149607

RESUMO

The many variants of human Ca2+/calmodulin-dependent protein kinase II (CaMKII) differ in the lengths and sequences of disordered linkers connecting the kinase domains to the oligomeric hubs of the holoenzyme. CaMKII activity depends on the balance between activating and inhibitory autophosphorylation (on Thr 286 and Thr 305/306, respectively, in the human α isoform). Variation in the linkers could alter transphosphorylation rates within a holoenzyme and the balance of autophosphorylation outcomes. We show, using mammalian cell expression and a single-molecule assay, that the balance of autophosphorylation is flipped between CaMKII variants with longer and shorter linkers. For the principal isoforms in the brain, CaMKII-α, with a ~30 residue linker, readily acquires activating autophosphorylation, while CaMKII-ß, with a ~200 residue linker, is biased towards inhibitory autophosphorylation. Our results show how the responsiveness of CaMKII holoenzymes to calcium signals can be tuned by varying the relative levels of isoforms with long and short linkers.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Calmodulina/metabolismo , Domínio Catalítico , Ativação Enzimática , Humanos , Fosforilação , Isoformas de Proteínas , Imagem Individual de Molécula
17.
Neuron ; 103(3): 380-394, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394063

RESUMO

The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) was touted as a memory molecule, even before its involvement in long-term potentiation (LTP) was shown. The enzyme has not disappointed, with subsequent demonstrations of remarkable structural and regulatory properties. Its neuronal functions now extend to long-term depression (LTD), and last year saw the first direct evidence for memory storage by CaMKII. Although CaMKII may have taken the spotlight, it is a member of a large family of diverse and interesting CaM kinases. Our aim is to place CaMKII in context of the other CaM kinases and then review certain aspects of this kinase that are of current interest.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Sequência de Aminoácidos , Animais , Encéfalo/enzimologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Cognição/fisiologia , Humanos , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Modelos Moleculares , Família Multigênica , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/fisiologia , Fosforilação , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica
18.
Neuron ; 39(2): 283-97, 2003 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-12873385

RESUMO

Neurite extension and branching are important neuronal plasticity mechanisms that can lead to the addition of synaptic contacts in developing neurons and changes in the number of synapses in mature neurons. Here we show that Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates movement, extension, and branching of filopodia and fine dendrites as well as the number of synapses in hippocampal neurons. Only CaMKIIbeta, which peaks in expression early in development, but not CaMKIIalpha, has this morphogenic activity. A small insert in CaMKIIbeta, which is absent in CaMKIIalpha, confers regulated F-actin localization to the enzyme and enables selective upregulation of dendritic motility. These results show that the two main neuronal CaMKII isoforms have markedly different roles in neuronal plasticity, with CaMKIIalpha regulating synaptic strength and CaMKIIbeta controlling the dendritic morphology and number of synapses.


Assuntos
Benzilaminas , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Neuritos/fisiologia , Isoformas de Proteínas/fisiologia , Sulfonamidas , Sinapses/fisiologia , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/classificação , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Fracionamento Celular/métodos , Movimento Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica , Proteínas de Fluorescência Verde , Immunoblotting , Imuno-Histoquímica , Isoquinolinas/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neuritos/efeitos dos fármacos , Isoformas de Proteínas/genética , Interferência de RNA/fisiologia , Ratos , Sinapses/efeitos dos fármacos , Fatores de Tempo , Transfecção
19.
J Neurosci ; 26(4): 1164-74, 2006 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-16436603

RESUMO

Changes in protein-protein interactions and activity states have been proposed to underlie persistent synaptic remodeling that is induced by transient stimuli. Here, we show an unusual stimulus-dependent transition from a short-lived to long-lasting binding between a synaptic receptor and its transducer. Both molecules, the NMDA receptor subunit NR2B and Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII), are strongly implicated in mediating synaptic plasticity. We show that CaMKII reversibly translocates to synaptic sites in response to brief stimuli, but its resident time at the synapse increases after longer stimulation. Thus, CaMKII localization reflects temporal patterns of synaptic stimulation. We have identified two surface regions of CaMKII involved in short-lived and long-term interactions with NR2B. Our results support an initial reversible and Ca2+/CaM-dependent binding at the substrate-binding site ("S-site"). On longer stimulation, a persistent interaction is formed at the T286-binding site ("T-site"), thereby keeping the autoregulatory domain displaced and enabling Ca2+/CaM-independent kinase activity. Such dual modes of interaction were observed in vitro and in HEK cells. In hippocampal neurons, short-term stimulation initiates a reversible translocation, but an active history of stimulation beyond some threshold produces a persistent synaptic localization of CaMKII. This activity-dependent incorporation of CaMKII into postsynaptic sites may play a role in maturation and plasticity of synapses.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Mapeamento de Interação de Proteínas , Receptores de N-Metil-D-Aspartato/química , Sinapses/química , 2-Amino-5-fosfonovalerato/farmacologia , Substituição de Aminoácidos , Animais , Sítios de Ligação , Cálcio/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/farmacologia , Glicina/farmacologia , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Humanos , Ionomicina/farmacologia , Rim , Modelos Moleculares , Mutação de Sentido Incorreto , N-Metilaspartato/farmacologia , Plasticidade Neuronal , Fosforilação , Mutação Puntual , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Ratos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sinapses/ultraestrutura , Transfecção
20.
CNS Spectr ; 12(4): 289-92, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17426666

RESUMO

A case is presented of a 56-year-old woman with a history of an eating disorder that preceded recognition of a mitochondrial myopathy. The possibility exists that her eating disorder was causally related to a more fundamental defect in mitochondrial oxidative metabolism. This case report highlights the phenotypic variability of mitochondrial myopathies. An increased risk of eating disorder may be associated with drugs that interfere with mitochondrial oxidative respiration.


Assuntos
Bulimia Nervosa/complicações , Síndrome MERRF/complicações , Apetite/genética , Bulimia Nervosa/genética , Bulimia Nervosa/psicologia , DNA Mitocondrial/genética , Diagnóstico Diferencial , Carboidratos da Dieta/administração & dosagem , Feminino , Predisposição Genética para Doença/genética , Humanos , Síndrome MERRF/genética , Síndrome MERRF/psicologia , Pessoa de Meia-Idade , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa