Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(46): 29035-29045, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33144502

RESUMO

Alphaviruses are positive-sense, enveloped RNA viruses that are important causes of viral encephalomyelitis. Sindbis virus (SINV) is the prototype alphavirus and preferentially infects neurons in rodents to induce an encephalomyelitis similar to the human disease. Using a mouse model of SINV infection of the nervous system, many of the immune processes involved in recovery from viral encephalomyelitis have been identified. Antibody specific to the SINV E2 glycoprotein plays an important role in recovery and is sufficient for noncytolytic suppression of virus replication in vivo and in vitro. To investigate the mechanism of anti-E2 antibody-mediated viral suppression, a reverse-phase protein array was used to broadly survey cellular signaling pathway activation following antibody treatment of SINV-infected differentiated AP-7 neuronal cells. Anti-E2 antibody induced rapid transient NF-κB and later sustained Y705 STAT3 phosphorylation, outlining an intracellular signaling cascade activated by antiviral antibody. Because NF-κB target genes include the STAT3-activating IL-6 family cytokines, expression of these messenger RNAS (mRNAs) was assessed. Expression of leukemia inhibitory factor (LIF) cytokine mRNA, but not other IL-6 family member mRNAs, was up-regulated by anti-E2 antibody. LIF induced STAT3 Y705 phosphorylation in infected differentiated AP-7 cells but did not inhibit virus replication. However, anti-E2 antibody localized the LIF receptor to areas of E2 expression on the infected cell surface, and LIF enhanced the antiviral effects of antibody. These findings identify activation of the NF-κB/LIF/STAT3 signaling cascade as involved in inducing antibody-mediated viral suppression and highlight the importance of nonneutralizing antibody functions in viral clearance from neurons.


Assuntos
Fator Inibidor de Leucemia/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Sindbis virus/imunologia , Infecções por Alphavirus/metabolismo , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Proteínas do Envelope Viral , Replicação Viral
2.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31554691

RESUMO

Alphaviruses are enveloped, positive-sense RNA viruses that are important causes of viral encephalomyelitis. Sindbis virus (SINV) infects the neurons of rodents and is a model for studying factors that regulate infection of neuronal cells. The outcome of alphavirus infection of the central nervous system is dependent on neuronal maturation status. Differentiated mature neurons survive and control viral replication better than undifferentiated immature neurons. The cellular factors involved in age-dependent susceptibility include higher levels of antiapoptotic and innate immune factors in mature neurons. Because NF-κB pathway activation is required for the initiation of both apoptosis and the host antiviral response, we analyzed the role of NF-κB during SINV infection of differentiated and undifferentiated rat neuronal cells. SINV infection induced canonical NF-κB activation, as evidenced by the degradation of IκBα and the phosphorylation and nuclear translocation of p65. Inhibition or deletion of the upstream IκB kinase substantially reduced SINV replication in differentiated but not in undifferentiated neuronal cells or mouse embryo fibroblasts. NF-κB inhibition did not affect the establishment of infection, replication complex formation, the synthesis of nonstructural proteins, or viral RNA synthesis in differentiated neurons. However, the translation of structural proteins was impaired, phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α) was decreased, and host protein synthesis was maintained, suggesting that NF-κB activation was involved in the regulation of translation during infection of mature neurons. Inhibition or deletion of double-stranded RNA-activated protein kinase (PKR) also decreased eIF2α phosphorylation, the translation of viral structural proteins, and virus production. Therefore, canonical NF-κB activation synergizes with PKR to promote SINV replication in differentiated neurons by facilitating viral structural protein translation.IMPORTANCE Mosquito-borne alphaviruses are a significant and growing cause of viral encephalomyelitis worldwide. The outcome of alphaviral neuronal infections is host age dependent and greatly affected by neuronal maturation status, with differentiated, mature neurons being more resistant to infection than undifferentiated, immature neurons. The biological factors that change during neuronal maturation and that influence the outcome of viral infection are currently only partially defined. These studies investigated the role of NF-κB in determining the outcome of alphaviral infection in mature and immature neurons. Inhibition of canonical NF-κB activation decreased alphavirus replication in mature neurons by regulating protein synthesis and limiting the production of the viral structural proteins but had little effect on viral replication in immature neurons or fibroblasts. Therefore, NF-κB is a signaling pathway that influences the maturation-dependent outcome of alphaviral infection in neurons and that highlights the importance of cellular context in determining the effects of signal pathway activation.


Assuntos
Infecções por Alphavirus/virologia , Alphavirus/efeitos dos fármacos , Alphavirus/crescimento & desenvolvimento , NF-kappa B/farmacologia , Neurônios/virologia , Replicação Viral/efeitos dos fármacos , Animais , Diferenciação Celular , Linhagem Celular , Culicidae/virologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Técnicas de Inativação de Genes , Camundongos , NF-kappa B/genética , Neurogênese , Fosforilação , RNA Viral/metabolismo , Ratos , Transdução de Sinais , Sindbis virus/efeitos dos fármacos , Sindbis virus/crescimento & desenvolvimento , Transcriptoma , eIF-2 Quinase/metabolismo
3.
J Gen Virol ; 100(1): 46-62, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30451651

RESUMO

Interferon (IFN) regulatory factors (IRFs) are important determinants of the innate response to infection. We evaluated the role(s) of combined and individual IRF deficiencies in the outcome of infection of C57BL/6 mice with Sindbis virus, an alphavirus that infects neurons and causes encephalomyelitis. The brain and spinal cord levels of Irf7, but not Irf3 mRNAs, were increased after infection. IRF3/5/7-/- and IRF3/7-/- mice died within 3-4 days with uncontrolled virus replication, similar to IFNα receptor-deficient mice, while all wild-type (WT) mice recovered. IRF3-/- and IRF7-/- mice had brain levels of IFNα that were lower, but brain and spinal cord levels of IFNß and IFN-stimulated gene mRNAs that were similar to or higher than WT mice without detectable serum IFN or increases in Ifna or Ifnb mRNAs in the lymph nodes, indicating that the differences in outcome were not due to deficiencies in the central nervous system (CNS) type I IFN response. IRF3-/- mice developed persistent neurological deficits and had more spinal cord inflammation and higher CNS levels of Il1b and Ifnγ mRNAs than WT mice, but all mice survived. IRF7-/- mice died 5-8 days after infection with rapidly progressive paralysis and differed from both WT and IRF3-/- mice in the induction of higher CNS levels of IFNß, tumour necrosis factor (TNF) α and Cxcl13 mRNA, delayed virus clearance and more extensive cell death. Therefore, fatal disease in IRF7-/- mice is likely due to immune-mediated neurotoxicity associated with failure to regulate the production of inflammatory cytokines such as TNFα in the CNS.


Assuntos
Infecções por Alphavirus/fisiopatologia , Encefalomielite/fisiopatologia , Interações Hospedeiro-Patógeno , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Sindbis virus/crescimento & desenvolvimento , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Fator Regulador 3 de Interferon/deficiência , Fator Regulador 7 de Interferon/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Medula Espinal/patologia , Análise de Sobrevida
4.
J Virol ; 90(20): 9251-62, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27489275

RESUMO

UNLABELLED: Inflammation is a necessary part of the response to infection but can also cause neuronal injury in both infectious and autoimmune diseases of the central nervous system (CNS). A neurovirulent strain of Sindbis virus (NSV) causes fatal paralysis in adult C57BL/6 mice during clearance of infectious virus from the CNS, and the virus-specific immune response is implicated as a mediator of neuronal damage. Previous studies have shown that survival is improved in T-cell-deficient mice and in mice with pharmacological inhibition of the inflammatory response and glutamate excitotoxicity. Because glutamine metabolism is important in the CNS for the generation of glutamate and in the immune system for lymphocyte proliferation, we tested the effect of the glutamine antagonist DON (6-diazo-5-oxo-l-norleucine) on the outcome of NSV infection in mice. DON treatment for 7 days from the time of infection delayed the onset of paralysis and death. Protection was associated with reduced lymphocyte proliferation in the draining cervical lymph nodes, decreased leukocyte infiltration into the CNS, lower levels of inflammatory cytokines, and delayed viral clearance. In vitro studies showed that DON inhibited stimulus-induced proliferation of lymphocytes. When in vivo treatment with DON was stopped, paralytic disease developed along with the inflammatory response and viral clearance. These studies show that fatal NSV-induced encephalomyelitis is immune mediated and that antagonists of glutamine metabolism can modulate the immune response and protect against virus-induced neuroinflammatory disease. IMPORTANCE: Encephalomyelitis due to infection with mosquito-borne alphaviruses is an important cause of death and of long-term neurological disability in those who survive infection. This study demonstrates the role of the virus-induced immune response in the generation of neurological disease. DON, a glutamine antagonist, inhibited the proliferation of lymphocytes in response to infection, prevented the development of brain inflammation, and protected mice from paralysis and death during treatment. However, because DON inhibited the immune response to infection, clearance of the virus from the brain was also prevented. When treatment was stopped, the immune response was generated, brain inflammation occurred, virus was cleared, and mice developed paralysis and died. Therefore, more definitive treatment for alphaviral encephalomyelitis should inhibit virus replication as well as neuroinflammatory damage.


Assuntos
Infecções por Alphavirus/tratamento farmacológico , Alphavirus/efeitos dos fármacos , Diazo-Oxo-Norleucina/farmacologia , Encefalomielite/tratamento farmacológico , Encefalomielite/virologia , Glutamina/antagonistas & inibidores , Infecções por Alphavirus/virologia , Animais , Células Cultivadas , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/virologia , Citocinas/metabolismo , Encefalite/metabolismo , Encefalite/virologia , Encefalite Viral/tratamento farmacológico , Encefalite Viral/virologia , Encefalomielite/metabolismo , Feminino , Linfócitos/metabolismo , Linfócitos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Paralisia/metabolismo , Paralisia/virologia , Sindbis virus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
5.
J Virol ; 89(1): 48-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25320290

RESUMO

UNLABELLED: Susceptibility to alphavirus infection is age dependent, and host maturation is associated with decreased virus replication and less severe encephalitis. To identify factors associated with maturation-dependent restriction of virus replication, we studied AP-7 rat olfactory bulb neuronal cells, which can differentiate in vitro. Differentiation was associated with a 150- to 1,000-fold decrease in replication of the alphaviruses Sindbis virus and Venezuelan equine encephalitis virus, as well as La Crosse bunyavirus. Differentiation delayed synthesis of SINV RNA and protein but did not alter the susceptibility of neurons to infection or virion maturation. Additionally, differentiation slowed virus-induced translation arrest and death of infected cells. Differentiation of uninfected AP-7 neurons was associated with changes in expression of antiviral genes. Expression of key transcription factors was increased, including interferon regulatory factor 3 and 7 (IRF-3 and IRF-7) and STAT-1, suggesting that neuronal maturation may enhance the capacity for antiviral signaling upon infection. IRF-7 produced by undifferentiated AP-7 neurons was exclusively the short dominant negative γ-isoform, while that produced by differentiated neurons was the full-length α-isoform. A similar switch in IRF-7 isoforms also occurred in the brains of maturing C57BL/6J mice. Silencing of IRF expression did not improve virus multiplication in differentiated neurons. Therefore, neuronal differentiation is associated with upregulation of transcription factors that activate antiviral signaling, but this alone does not account for maturation-dependent restriction of virus replication. IMPORTANCE: Viral encephalomyelitis is an important cause of age-dependent morbidity and mortality. Because mature neurons are not readily regenerated, recovery from encephalitis suggests that mature neurons utilize unique antiviral mechanisms to block infection and/or clear virus. To identify maturational changes in neurons that may improve outcome, we compared immature and mature cultured neurons for susceptibility to three encephalitic arboviruses and found that replication of Old World and New World alphaviruses and a bunyavirus was reduced in mature compared to immature neurons. Neuronal maturation was associated with increased baseline expression of interferon regulatory factor 3 and 7 mRNAs and production of distinct isoforms of interferon regulatory factor 7 protein. Overall, our studies identified maturational changes in neurons that likely contribute to assembly of immunoregulatory factors prior to infection, a more rapid antiviral response, increased resistance to virus infection, and improved survival.


Assuntos
Diferenciação Celular , Vírus da Encefalite Equina Venezuelana/imunologia , Fator Regulador 7 de Interferon/biossíntese , Neurônios/virologia , Orthobunyavirus/imunologia , Sindbis virus/imunologia , Replicação Viral , Animais , Células Cultivadas , Vírus da Encefalite Equina Venezuelana/fisiologia , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Neurônios/imunologia , Neurônios/fisiologia , Orthobunyavirus/fisiologia , Isoformas de Proteínas/biossíntese , Ratos , Sindbis virus/fisiologia
6.
J Virol ; 88(14): 8065-76, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24807715

RESUMO

The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. Importance: Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of pathogenic viruses is not enhanced in human cells engineered to be unable to produce miRNAs, indicating that viruses have evolved to be resistant to inhibition by miRNAs. This result is important, as it implies that manipulation of miRNA levels is not likely to prove useful in inhibiting virus replication. It also focuses attention on the question of how viruses have evolved to resist inhibition by miRNAs and whether virus mutants that have lost this resistance might prove useful, for example, in the development of attenuated virus vaccines.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , MicroRNAs/genética , MicroRNAs/imunologia , Replicação Viral , Vírus/genética , Vírus/imunologia , Animais , Linhagem Celular , Inativação Gênica , Humanos , Vírus/crescimento & desenvolvimento
7.
J Virol ; 87(14): 7816-27, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23678166

RESUMO

The innate immune response to viral infection frequently includes induction of type I interferons (IFN), but many viruses have evolved ways to block this response and increase virulence. In vitro studies of IFN production after infection of susceptible cells with measles virus (MeV) have often reported greater IFN synthesis after infection with vaccine than with wild-type strains of MeV. However, the possible presence in laboratory virus stocks of 5' copy-back defective interfering (DI) RNAs that induce IFN independent of the standard virus has frequently confounded interpretation of data from these studies. To further investigate MeV strain-dependent differences in IFN induction and the role of DI RNAs, monocyte-derived dendritic cells (moDCs) were infected with the wild-type Bilthoven strain and the vaccine Edmonston-Zagreb strain with and without DI RNAs. Production of type I IFN, type III IFN, and the interferon-stimulated genes (ISGs) Mx and ISG56 by infected cells was assessed with a flow cytometry-based IFN bioassay, quantitative reverse transcriptase PCR (RT-PCR), and immunoassays. Bilthoven infected moDCs less efficiently than Edmonston-Zagreb. Presence of DI RNAs in vaccine stocks resulted in greater maturation of moDCs, inhibition of virus replication, and induction of higher levels of IFN and ISGs. Production of type I IFN, type III IFN, and ISG mRNA and protein was determined by both the level of infection and the presence of DI RNAs. At the same levels of infection and in the absence of DI RNA, IFN induction was similar between wild-type and vaccine strains of MeV.


Assuntos
Vírus Defeituosos/genética , Células Dendríticas/imunologia , Imunidade Inata/imunologia , Interferons/biossíntese , Vírus do Sarampo/imunologia , RNA Viral/genética , Vacinas Virais/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sequência de Bases , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Primers do DNA/genética , Citometria de Fluxo , Humanos , Immunoblotting , Interferons/imunologia , Dados de Sequência Molecular , Proteínas de Ligação a RNA , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Células Vero
8.
J Virol ; 87(15): 8511-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23720714

RESUMO

Alphavirus dogma has long dictated the production of a discrete set of structural proteins during infection of a cell: capsid, pE2, 6K, and E1. However, bioinformatic analyses of alphavirus genomes (A. E. Firth, B. Y. Chung, M. N. Fleeton, and J. F. Atkins, Virol. J. 5:108, 2008) suggested that a ribosomal frameshifting event occurs during translation of the alphavirus structural polyprotein. Specifically, a frameshift event is suggested to occur during translation of the 6K gene, yielding production of a novel protein, termed transframe (TF), comprised of a C-terminal extension of the 6K protein in the -1 open reading frame (ORF). Here, we validate the findings of Firth and colleagues with respect to the production of the TF protein and begin to characterize the function of TF. Using a mass spectrometry-based approach, we identified TF in purified preparations of both Sindbis and Chikungunya virus particles. We next constructed a panel of Sindbis virus mutants with mutations which alter the production, size, or sequence of TF. We demonstrate that TF is not absolutely required in culture, although disrupting TF production leads to a decrease in virus particle release in both mammalian and insect cells. In a mouse neuropathogenesis model, mortality was <15% in animals infected with the TF mutants, whereas mortality was 95% in animals infected with the wild-type virus. Using a variety of additional assays, we demonstrate that TF retains ion-channel activity analogous to that of 6K and that lack of production of TF does not affect genome replication, particle infectivity, or envelope protein transit to the cell surface. The TF protein therefore represents a previously uncharacterized factor important for alphavirus assembly.


Assuntos
Vírus Chikungunya/fisiologia , Regulação Viral da Expressão Gênica , Sindbis virus/fisiologia , Proteínas Virais/biossíntese , Montagem de Vírus , Infecções por Alphavirus/mortalidade , Infecções por Alphavirus/patologia , Infecções por Alphavirus/virologia , Animais , Linhagem Celular , Vírus Chikungunya/genética , Vírus Chikungunya/patogenicidade , Modelos Animais de Doenças , Insetos , Camundongos , Sindbis virus/genética , Análise de Sobrevida , Replicação Viral
9.
J Virol ; 85(16): 8348-58, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21653668

RESUMO

Apoptosis is an important antivirus defense by virtue of its impact on virus multiplication and pathogenesis. To define molecular mechanisms by which viruses are detected and the apoptotic response is initiated, we examined the antiviral role of host inhibitor-of-apoptosis (IAP) proteins in insect cells. We report here that the principal IAPs, DIAP1 and SfIAP, of the model insects Drosophila melanogaster and Spodoptera frugiperda, respectively, are rapidly depleted and thereby inactivated upon infection with the apoptosis-inducing baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Virus-induced loss of these host IAPs triggered caspase activation and apoptotic death. Elevation of IAP levels by ectopic expression repressed caspase activation. Loss of host IAP in both species was triggered by AcMNPV DNA replication. By using selected inhibitors, we found that virus-induced IAP depletion was mediated in part by the proteasome but not by caspase cleavage. Consistent with this conclusion, mutagenic disruption of the SfIAP RING motif, which acts as an E3 ubiquitin ligase, stabilized SfIAP during infection. Importantly, SfIAP was also stabilized upon the removal of its 99-residue N-terminal leader, which serves as a critical determinant of IAP turnover. These data indicated that a host pathway initiated by virus DNA replication and acting through instability motifs embedded within IAP triggers IAP depletion and thereby causes apoptosis. Taken together, the results of our study suggest that host modulation of cellular IAP levels is a conserved mechanism by which insects mount an apoptotic antiviral response. Thus, host IAPs may function as critical sentinels of virus invasion in insects.


Assuntos
Apoptose , Baculoviridae/fisiologia , Replicação do DNA , Proteínas de Drosophila/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas de Insetos/metabolismo , Replicação Viral , Animais , Baculoviridae/genética , Baculoviridae/patogenicidade , Caspases/biossíntese , Caspases/metabolismo , Linhagem Celular , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster/virologia , Immunoblotting , Proteínas Inibidoras de Apoptose/biossíntese , Proteínas Inibidoras de Apoptose/genética , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Interferência de RNA , RNA Interferente Pequeno , Spodoptera/virologia
10.
J Virol ; 83(21): 11123-32, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19706708

RESUMO

Apoptosis is an important antivirus defense. To define the poorly understood pathways by which invertebrates respond to viruses by inducing apoptosis, we have identified replication events that trigger apoptosis in baculovirus-infected cells. We used RNA silencing to ablate factors required for multiplication of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Transfection with double-stranded RNA (dsRNA) complementary to the AcMNPV late expression factors (lefs) that are designated as replicative lefs (lef-1, lef-2, lef-3, lef-11, p143, dnapol, and ie-1/ie-0) blocked virus DNA synthesis and late gene expression in permissive Spodoptera frugiperda cells. dsRNAs specific to designated nonreplicative lefs (lef-8, lef-9, p47, and pp31) blocked late gene expression without affecting virus DNA replication. Thus, both classes of lefs functioned during infection as defined. Silencing the replicative lefs prevented AcMNPV-induced apoptosis of Spodoptera cells, whereas silencing the nonreplicative lefs did not. Thus, the activity of replicative lefs or virus DNA replication is sufficient to trigger apoptosis. Confirming this conclusion, AcMNPV-induced apoptosis was suppressed by silencing the replicative lefs in cells from a divergent species, Drosophila melanogaster. Silencing replicative but not nonreplicative lefs also abrogated AcMNPV-induced shutdown of host protein synthesis, suggesting that virus DNA replication triggers inhibition of host biosynthetic processes and that apoptosis and translational arrest are linked. Our findings suggest that baculovirus DNA replication triggers a host cell response similar to the DNA damage response in vertebrates, which causes translational arrest and apoptosis. Pathways for detecting virus invasion and triggering apoptosis may therefore be conserved between insects and mammals.


Assuntos
Apoptose/fisiologia , Baculoviridae/genética , Replicação do DNA , Biossíntese de Proteínas , Isoformas de Proteínas/metabolismo , Proteínas Virais/metabolismo , Animais , Baculoviridae/metabolismo , Linhagem Celular , DNA Viral , Regulação da Expressão Gênica , Inativação Gênica , Insetos , Isoformas de Proteínas/genética , Proteínas Virais/genética
11.
J Virol ; 83(1): 262-72, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18945761

RESUMO

Immediate early viral protein IE1 is a potent transcriptional activator encoded by baculoviruses. Although the requirement of IE1 for multiplication of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is well established, the functional roles of IE1 during infection are unclear. Here, we used RNA interference to ablate IE1, plus its splice variant IE0, and thereby define in vivo activities of these early proteins, including gene-specific regulation and induction of host cell apoptosis. Confirming an essential replicative role, simultaneous ablation of IE1 and IE0 by gene-specific double-stranded RNAs inhibited AcMNPV late gene expression, reduced yields of budded virus by more than 1,000-fold, and blocked production of occluded virus particles. Depletion of IE1 and IE0 had no effect on early expression of the envelope fusion protein gene gp64 but abolished early expression of the caspase inhibitor gene p35, which is required for prevention of virus-induced apoptosis. Thus, IE1 is a positive, gene-specific transactivator. Whereas an AcMNPV p35 deletion mutant caused widespread apoptosis in permissive Spodoptera frugiperda cells, ablation of IE1 and IE0 prevented this apoptosis. Silencing of ie-1 also prevented AcMNPV-induced apoptosis in nonpermissive Drosophila melanogaster cells. Thus, de novo synthesis of IE1 is required for virus-induced apoptosis. We concluded that IE1 causes apoptosis directly or contributes indirectly by promoting virus replication events that subsequently trigger cell death. This study reveals that IE1 is a gene-selective transcriptional activator which is required not only for expedition of virus multiplication but also for blocking of its own proapoptotic activity by upregulation of baculovirus apoptotic suppressors.


Assuntos
Apoptose , Baculoviridae/fisiologia , Transativadores/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Drosophila melanogaster , Regulação Viral da Expressão Gênica , Inativação Gênica , Interferência de RNA , Spodoptera , Transativadores/genética , Proteínas Virais/genética
12.
J Virol ; 83(11): 5640-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19297464

RESUMO

Each Sindbis virus (SINV) surface glycoprotein has two sites for N-linked glycosylation (E1 positions 139 and 245 [E1-139 and E1-245] and E2 positions 196 and 318 [E2-196 and E2-318]). Studies of SINV strain TE12 mutants with each site eliminated identified the locations of carbohydrates by cryo-electron microscopy (S. V. Pletnev et al., Cell 105:127-136, 2001). In the current study, the effects of altered glycosylation on virion infectivity, growth in cells of vertebrates and invertebrates, heparin binding, virulence in mice, and replication in mosquitoes were assessed. Particle-to-PFU ratios for E1-139 and E2-196 mutant strains were similar to that for TE12, but this ratio for the E1-245 mutant was 100-fold lower than that for TE12. Elimination of either E2 glycosylation site increased virus binding to heparin and increased replication in BHK cells. Elimination of either E1 glycosylation site had no effect on heparin binding but resulted in an approximately 10-fold decrease in virus yield from BHK cells compared to the TE12 amount. No differences in pE2 processing were detected. E2-196 and E2-318 mutants were more virulent in mice after intracerebral inoculation, while E1-139 and E1-245 mutants were less virulent. The E1-245 mutant showed impaired replication in C7/10 mosquito cells and in Culex quinquefasciatus after intrathoracic inoculation. We conclude that the increased replication and virulence of E2-196 and E2-318 mutants are primarily due to increased efficiency of binding to heparan sulfate on mammalian cells. Lack of glycosylation at E1-139 or E1-245 impairs replication in vertebrate cells, while E1-245 also severely affects replication in invertebrate cells.


Assuntos
Infecções por Alphavirus/virologia , Sindbis virus/metabolismo , Replicação Viral , Animais , Linhagem Celular , Sistema Nervoso Central/virologia , Cricetinae , Culex , Glicosilação , Heparina/metabolismo , Mutação/genética , Ligação Proteica , Sindbis virus/genética , Sindbis virus/patogenicidade , Vírion
13.
PLoS One ; 8(10): e76412, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204622

RESUMO

Interferon (IFN)-gamma is an important component of the immune response to viral infections that can have a role both in controlling virus replication and inducing inflammatory damage. To determine the role of IFN-gamma in fatal alphavirus encephalitis, we have compared the responses of wild type C57BL/6 (WTB6) mice with mice deficient in either IFN-gamma (GKO) or the alpha-chain of the IFN-gamma receptor (GRKO) after intranasal infection with a neuroadapted strain of sindbis virus. Mortalities of GKO and GRKO mice were similar to WTB6 mice. Both GKO and GRKO mice had delayed virus clearance from the brain and spinal cord, more infiltrating perforin(+) cells and lower levels of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 mRNAs than WTB6 mice. However, inflammation was more intense in GRKO mice than WTB6 or GKO mice with more infiltrating CD3(+) T cells, greater expression of major histocompatibility complex-II and higher levels of interleukin-17A mRNA. Fibroblasts from GRKO embryos did not develop an antiviral response after treatment with IFN-gamma, but showed increases in TNF-alpha, IL-6, CXCL9 and CXCL10 mRNAs although these increases developed more slowly and were less intense than those of WTB6 fibroblasts. These data indicate that both GKO and GRKO mice fail to develop an IFN-gamma-mediated antiviral response, but differ in regulation of the inflammatory response to infection. Therefore, GKO and GRKO cannot be considered equivalent when assessing the role of IFN-gamma in CNS viral infections.


Assuntos
Encefalomielite/genética , Encefalomielite/virologia , Interferon gama/deficiência , Receptores de Interferon/deficiência , Infecções por Alphavirus/genética , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/virologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite/imunologia , Encefalomielite/mortalidade , Encefalomielite/patologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Camundongos , Camundongos Knockout , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Transdução de Sinais , Sindbis virus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Receptor de Interferon gama
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa